Heavy-quark transport and hadronization, including multi-heavy-flavour: large & small collision systems

Vincenzo Greco -

University of Catania/INFN-LNS

High Luminosity LHC and Hadron Colliders, LNF, Frascati, 1-4 Ottobre 2024

INFŃ

Istituto Nazionale di Fisica Nucleare

Outline

- ♦ Basic concepts & motivation for HQ physics in HotQCD matter
- ♦ Results from the first stage:
 - strong non-perturbative HQ dynamics [agreement to LQCD?!, close to AdS/CFT limit?]
 - <u>non-universal</u> hadronization $\neq e^+e^-$ in AA, but seems even in pp@TeV
- ♦ Why precise measurement at low p_T, extension to bottom & access to new observables allow for a breakthrough
- ♦ The relevance of multi-charm production and scan from PbPb \rightarrow OO :

Basic Scales and specific of HQ

Why Heavy?

- ▶ PARTICLE Physics: $\mathbf{m}_{c,b} >> \Lambda_{QCD}$ pQCD initial production
 ▶ PLASMA Physics:
 - $m_{c,b} >> T_{RHIC,LHC}$ no thermal production
 - $m_{c,b} >> gT_{RHIC,LHC}$ soft scatterings \rightarrow Brownian motion

Specific Features:

- $\succ \tau_0 {\approx 1/2m_Q} << \tau_{QGP}$ witness of all the QGP evolution
- $ightarrow au_{th} \approx au_{QGP} >> au_{q,g}$ carry more information of their evolution

Basic Scales and specific of HQ

Why Heavy?

- ▶ PARTICLE Physics: $\mathbf{m}_{c,b} >> \Lambda_{QCD}$ pQCD initial production
 ▶ PLASMA Physics:
 - $m_{c,b} >> T_{RHIC,LHC}$ no thermal production
 - $m_{c,b} >> gT_{RHIC,LHC}$ soft scatterings \rightarrow Brownian motion

Specific Features:

- $\succ \tau_0 {\approx 1/2m_Q} << \tau_{QGP}$ witness of all the QGP evolution
- $ightarrow au_{th} \approx au_{QGP} >> au_{q,g}$ carry more information of their evolution

- For HQ we know initial p_T distribution at variance with light quark & gluons
- ↔ HQ not created at hadronization $m_{b,c} >> \Lambda_{QCD}$, T :

HQ link to Lattice QCD at finite T

* Ab-initio Diffusion Transport Coefficient

Spectral function ρ_E extracted from euclidean color-electric correlator $D_E(\tau) \rightarrow$

Kubo formula diffusion in the $p \rightarrow 0$ limit:

$$\frac{D_p}{T^3} = \lim_{\omega \to 0} \frac{T\rho_E(\omega)}{\omega} \longrightarrow D_s = \frac{T^2}{D_p} = \frac{T}{M_Q} \tau_{th}$$

 D_s determines diffusion (brownian limit) and by fluctuation-dissipation theorem: HQ momentum drag $\gamma \rightarrow$ thermalization time

$$\mathbf{p}_0 \mathbf{e}^{-\gamma \mathbf{t}} \qquad \left\langle \Delta p^2 \right\rangle = 3D_p / \gamma (1 - e^{-2\gamma t}) \qquad D_s = \frac{T}{M\gamma} = \frac{T^2}{D_p} = \frac{T}{M} \tau_{th}$$

Approximations/limitations:

- *Extraction of* $\rho_E(\omega)$ from $D_E(\tau)$ is not a well posed problema with a finite limited # of points
- infinite HQ massvs. charm quark, continuum extrapolation...
- quenched $N_f=0 \rightarrow$ to non quenched QCD (2023-24)

HQ allow for developing a NRQCD EFT at finite T & many-body T-matrix from V(r,T) by LQCD

Standard Dynamics of Heavy Quarks in the QGP

- ♦ This is the main set up at least at p < 8-10 GeV
- ♦ Brownian motion challenged for charm ($M_c \sim 3 \text{ T} \sim \text{gT}$): Relativistic Boltzmann dynamics
- $\Leftrightarrow \ At \ p_T > 10 \ GeV \ radiative \ E_{loss} \ , \ q_{hat}, \ jet \ physics \quad [Cunqueiro \ Mendez, \ previous \ talk]$

Studying the HF in uRHIC

R_{AA} and v₂ evolution & correlation

No interaction means $R_{AA}{=}1$ and $v_2{=}0.$ more interaction decrease R_{AA} and increase v_2

R_{AA} is "generated" faster than v_{2}

The relation between R_{AA} and time is **not trivial** and depend on the time (temperature) dependence of the interaction.

Diffusion Coefficient of Charm Quark:first stage

uRHIC created matter is the Hot QCD matter not in perturbative regime!

X. Dong and VG, Prog.Part.Nucl.Phys. (2019)

★ Largely non-perturbative Ds (close AdS/CFT) Non perturbative interaction even if M_Q >> $Λ_{QCD}$ and M_Q >> m_q

$$\tau_{th} = \frac{M}{2\pi T^2} (2\pi T D_s) \cong 1.8 \, \frac{2\pi T D_s}{(T/T_c)^2} \, \, {\rm fm/c}$$

pQCD, Asymptotic free regime

Not a model fit to IQCD data! Phenomenology $R_{AA} \& v_2 \approx Lattice QCD$

Infinite Strong Coupling (AdS/CFT)

Diffusion of Charm Quark: first stage

*Main differences in comparing to LQCD-AdS/CFT:

- quenched QCD (Yang-Mills) + $M_Q \rightarrow \infty$
- phenomenology at intermediate $p_T LQCD(AdS/CFT)$ at $p \rightarrow 0$

*Main sources of differences in models:

- impact of hadronization («unexpected» large baryon production)
- momentum depedence of matrix elements
- data not enough precise/observable not enough constraining

Diffusion of Charm Quark: first stage

New LQCD 2023-24 at least a factor of 2 smaller

*Main differences in comparing to LQCD-AdS/CFT:

- quenched QCD (Yang-Mills) + $M_Q \rightarrow \infty$
- phenomenology at intermediate $p_T LQCD(AdS/CFT)$ at $p \rightarrow 0$

*Main sources of differences in models:

- impact of hadronization («unexpected» large baryon production)
- momentum depedence of matrix elements
- data not enough precise/observable not enough constraining

QGP diffuse Charm quarks like a "perfect fluid"		
	Matter State	D _s (cm²/s)
Air in Water	liquid	2.0 × 10 ⁻⁵
Hydrogen in Iron	solid	1.66 × 10 ⁻⁹
HQ in QGP	Liquid?	(100-500) × 10 ⁻⁵

Impact of HF in-medium Hadronization

<u>Opposite</u> to in-medium scattering Coalescence **brings up both** R_{AA} and v_2 an effect that brings up toward experimental data, allows to disentagle the two

Phase-space coalescence: quark recombination $f_M(P_H = p_1 + p_2) \approx f_q(p_1) \otimes f_{\bar{q}}(p_2) \otimes \Phi_M(\Delta x, \Delta p)$ Independent Fragmentation $f_H(P_H = zp_T) = f_{q,g}(p_T) \otimes D_{q,g \rightarrow H}(z)$, z < 1

→Add momenta: P_T^H from low p_T quark → Enhance elliptic flow v_2 by n_q scaling $n_q v_2(n_q p_T)$ Hadronization play an important role in AA to determine R_{AA} and v_2 of D meson

 \rightarrow Determintation of transp. coeff. D_s(T)

... but there has been a surprise both in AA but even in pp@TeV

In-medium modification of hadronization even in pp@TeV

- Large Heavy Baryon to Meson production ~ a factor of 10 larger than in e+e- or PYTHIA
- Breaking of Universal Fragmentation Function already in pp in HF sector

HF hadronization has stimulated several developments

- ▶ PYHTIA beyond Leading Color (LC) → Color Reconnection (CR) in pp
- Coalescence+Fragmentation approach applied also to pp
- > Local Color Recombination: **POWLANG** in AA and in pp
- Inclusion of HF <u>Coalescence</u>+ Fragmentation in **EPOS** (pp &AA)

HF hadronization has stimulated several developments

- ▶ PYHTIA beyond Leading Color (LC) → Color Reconnection (CR) in pp
- Coalescence+Fragmentation approach applied to pp
- Local Color Recombination: POWLANG in AA and in pp
- ▶ Inclusion of HF <u>Coalescence</u>+ Fragmentation in **EPOS** (pp &AA)

Yields modified from e⁺e⁻ (e⁻p) to pp, then from pp to AA mostly coupling to flowing QGP medium modifies p_T shape of the ratio Λc/D?

HF hadronization has stimulated several developments

- ▶ PYHTIA beyond Leading Color (LC) → Color Reconnection (CR) in pp
- Coalescence+Fragmentation approach applied to pp
- Local Color Recombination: POWLANG in AA and in pp
- Inclusion of HF <u>Coalescence</u>+ Fragmentation in **EPOS** (pp &AA)

Yields modified from e⁺e⁻ (e⁻p) to pp, then from pp to AA mostly coupling to flowing QGP medium modifies p_T shape of the ratio Λc/D?

PYTHIA Color Reconnection/ Local Color neutralization

Leading Color $(N_c \rightarrow \infty)$: Prob. of Local Color neutralization $\rightarrow 0$

- □ When string color reconnection is switched-on in pp
 → Very large baryon Λ_c, Σ_c enhancement
 → not so relevant for D, like coalescence+fragmentation
- Not indipendent strings Local reconnection ->
 string energy minimization -> smaller invariant mass
 close to D meson states

(a) Mesonic reconnection.

PYTHIA Color Reconnection/ Local Color neutralization

(a) Mesonic reconnection.

(b) Baryonic reconnection.

Leading Color $(N_c \rightarrow \infty)$: Prob. of Local Color neutralization $\rightarrow 0$

- ❑ When string color reconnection is switched-on in pp
 → Very large baryon Λ_c, Σ_c enhancement
 → not so relevant for D, like coalescence+fragmentation
- Not indipendent strings Local reconnection ->
 string energy minimization -> smaller invariant mass
 close to D meson states

Needed switch-off of **diquark** *I*=1 junction suppression (set for e^+e^-). Removing it \rightarrow Agreeement to data of $\Lambda_c \leftarrow \Sigma_c$ It goes in the direction of simply recombine according to SU(3)

POWLANG Local Color Neutralization

 n_l

A. Beraudo et al., EPJC82(2022) [AA] A. Beraudo et al., PRD109(2024) [pp]

Charm recombine *locally* with quarks & diquarks assumed thermally distributed + radial flow:

$$\cong g_s g_I \frac{T_H m_l^2}{2\pi^2} K_2\left(\frac{m_l}{T_H}\right) \qquad l = q, \overline{q}, s, \overline{q}, (ud)_0, (sq)_0, (sq)_1, \dots$$

Dense medium (pp &AA) \rightarrow **local** color statistical neutralization <u>Narrow invariant M distribution close to D meson masses</u> not large M string breaking with large y endpoints

→ Qualitatively similar to PYTHIA with local CR Coalescence or Resonance Recombination including strong impact on $v_2(p_T)$ from c→ D, Λ_c (all recomb.)

Studying the HF in uRHIC after Run2

- \blacktriangleright Most models studies at p_T>1.5-2 GeV and mainly not including impact of hadroning into Λ_c
- > To be done a new assessment of $D_s(T)$ with upgraded approach:
 - \rightarrow compare to LQCD & AdS/CFT need data $p_T \rightarrow 0$
 - \rightarrow need precision data at low p_T not only for D, necessary Λ_c , important Ξ_c , Ω_c
 - \rightarrow need not only R_{AA} and v₂ but also more esclusive observables \rightarrow needed HL-LHC 20

"See" Hadronization mechanism through elliptic flow

If the enhancement of the yield comes from quark coalescence it should be associated to \rightarrow Large v₂ of $\Lambda_c \sim n_q v_{2q}(n_q p_T)$, visible at intermediate p_T Effect to be measured in AA; will it be seen also in pp? [for AA Run3-4]

- ✓ It should be also confirmed for Ξ_c [Run 5-6]
- Would PYHTIA-CR predict finite v₂ of D, Λ_c in pp? by String shoving? Can it predict D, Λ_c systematics?

"See" Hadronization mechanism through elliptic flow

If the enhancement of the yield comes from quark coalescence it should be associated to \rightarrow Large v₂ of $\Lambda_c \sim n_q v_{2q}(n_q p_T)$, visible at intermediate p_T Effect to be measured in AA; will it be seen also in pp? [for AA Run3-4]

- Λ_c/D coal.+fragm Λ_{c} coal./ D coal.+fragm. Λ_{c} fragm. / D coal.+fragm V2^{Nc/V2}D⁰ 0.5 PbPb@5.02TeV 30-50% 0 1.5 2 2.5 3 3.5 4.5 p_T [GeV]
 - Minissale, Plumari, VG, in preparation

- ✓ It should be also confirmed for Ξ_c [Run 5-6]
- Would PYHTIA-CR predict finite v₂ of D, Λ_c in pp? by String shoving? Can it predict D, Λ_c systematics?

Methods/tools of AA allow better insight into Hadronization in pp.

Able to «see» even the local Temperature. fluctuations of the QGP

Transverse view

Relativistic HIC in '90s, '00 till about 2005 Anisotropies only with <u>even</u> parity due to symmetry \rightarrow v₂ elliptic flow

Transverse view of HIC, nowdays

All harmonics appearing with different weights.

$$v_n = \langle \cos(n\varphi) \rangle$$

When including fluctuations, all moments appear:

Able to «see» even the local Temperature. fluctuations of the QGP

Transverse view

Relativistic HIC in '90s, '00 till about 2005 Anisotropies only with <u>even</u> parity due to symmetry \rightarrow v₂ elliptic flow

Transverse view of HIC, nowdays

All harmonics appearing with different weights.

 $v_n = \langle \cos(n\varphi) \rangle$

When including fluctuations, all moments appear:

A powerful not yet exploited for HQ especially at low p_T lack statistics

HL-LHC allows to access v_n light-HQ correlation

Event-by-event coupling of the anisotrpy of the bulk (light) and the charm (heavy) one → Much more precise determination of the strength interaction: drag $\Gamma \sim 1/D_s$

A very solid and high precision comparison to LQCD, development of NRQCD-EFT, quantification of interaction only by D_s(full Brownian motion) requires a full HQ , but $M_c \sim gT$, at T \sim 300-500 MeV \rightarrow full Heavy is Bottom

Relevance of direct Bottom measurements

▶ Quite close to $M \rightarrow \infty$ & Non Relativistic limit

- \rightarrow more solid comparison to LQCD/NRQCD for D_s(T)
- \blacktriangleright $M_Q(T) >> T$, gT full **Brownian motion**, satisfy fluctuations dissipation theorem
 - → damps uncertainties in transport evolution (Langevin, Boltzmann, Kadanoff-Baym...)
- > Impact of **hadronization** on $dN/dp_T \& v_n(p_T)$ moderate and less different by fragmention

Relevance of direct Bottom measurements

▶ Quite close to $M \rightarrow \infty$ & Non Relativistic limit

- \rightarrow more solid comparison to LQCD/NRQCD for D_s(T)
- \succ $M_Q(T) >> T$, gT full **Brownian motion**, satisfy fluctuations dissipation theorem
 - → damps uncertainties in transport evolution (Langevin, Boltzmann, Kadanoff-Baym...)
- > Impact of **hadronization** on $dN/dp_T \& v_n(p_T)$ moderate and less different by fragmention

Relevance of direct Bottom measurements

- ▶ Quite close to $M \rightarrow \infty$ & Non Relativistic limit
 - \rightarrow more solid comparison to LQCD/NRQCD for D_s(T)
- \succ $M_Q(T) >> T$, gT full **Brownian motion**, satisfy fluctuations dissipation theorem
 - → damps uncertainties in transport evolution (Langevin, Boltzmann, Kadanoff-Baym...)
- > Impact of **hadronization** on $dN/dp_T \& v_n(p_T)$ moderate and less different by fragmention
- ► Larger $\tau_{th}^b \sim M/T \tau_{th}^c$ more sensitive to dynamical evolution: carry more info

Extension of QPM to bottom dynamics: $R_{AA} V_2$, V_3

- ➢ No parameters changed wrt charm (only M_b), but :
 - agreement within still large uncertainty
 - no direct B data (semileptonic decay)
 - lack v₃
 - $v_n(hard)$ - $v_n(soft)$ correlation

 \rightarrow Need for luminosity of Run 5-6

M.L. Sambataro et al., PLB 849(2024)

HQ probe of CGC/Glasma phase 0+<t<0.3 fm/c

Color Glass Condensate (CGC) is the high-energy limit of QCD in the BFKL direction in the plane $[Q^2, x]$?

g²µτ≈0.1 fm/c

time

 $g^2\mu\tau$

10

 $g^2\mu=3-5GeV$ 0.1

current picture, but we look for signatures to spot from this phase [~ Early Universe, inflation]

Impact of Glasma phase

Potential impact on AA observables (starting at $\tau = \tau_{form}$ -SU(2))

♦ Opposite to HQ in QGP: Dominance of diffusion-like \rightarrow initial enhancement of $R_{AA}(p_T)$!!!

• Gain in v_2 : larger interaction in QGP stage needed to have same $R_{AA}(p_T)$ [18% smaller D_s]

High precison needed Run4, and likely alone not conclusive

Impact of Glasma phase

Glasma impact on angular $Q\bar{Q}$

First study of azimuthal $Q\bar{Q}$ correlation: large decorellation in only 0.2 fm/c Significant effect of glasma on HQ!

Calculation in SU(3) +longitudinal expansion

D. Avramescu et al., arXiv:2409.10.565. [hep-ph]

pA collision should keep memory of it especially correlating it to R_{AA} , v_n :

Nucleus A

Glasma

Nucleus B

- Identify Glasma phase
- quantify in medium $E_{loss} D_s(T)$
- solve the puzzle od $R_{pA}\,{\sim}1$ and v_2 large

Accessible with high precsion for D and Λ_c from Run 5-6
HQ Surprise also transverse flow

Would you expect charm quark to have a smaller v_2 ? Or a smaller one due to its mass?

Very surprising!

 v_1 (HQ) ~ 30 times v_1 light hadrons (π ,K,..)

HQ Surprise also transverse flow

Charm as a probe of huge B Magnetic field

Schematic calculation: early time behavior quite uncertain theoretically (non eq., back-reaction, glasma...)

♦ Time decreasing magnetic B_y creates E_X that induces a current in opposite direction: <u>delicate balance</u>! [Cancellation at 95% level]

HQ best probe for v₁ from e.m. field:

- $t_{form} \approx 0.08$ fm/c when By is \approx its maximum
- No contribution from neutral gluons diff. from π^+/π^- , p/ \overline{p}
- $\tau_{th}(c) \approx \tau_{QGP} >> \tau_{e.m}$ (keep more memory effects)

v₁ transverse flow current measurement

Oliva, Plumari, V.G., JHEP(2020)

STAR@RHIC: $d(\Delta v_1)/dy|_{exp} = -0.011 \pm 0.024(stat) \pm 0.016(syst)$

 \approx 10 times larger than charged, similar to S. Das et al., PLB768 (2017) but with current precision **also consistent with 0**!

First measurement ALICE@LHC- large systematic/statistic error opposite sign & magnitude \approx 40 times larger than predictions

Need for high precision. Likely Run 4 or 5

v₁ transverse flow current measurement

Oliva, Plumari, V.G., JHEP(2020)

STAR@RHIC: $d(\Delta v_1)/dy|_{exp} = -0.011 \pm 0.024(stat) \pm 0.016(syst)$

 \approx 10 times larger than charged, similar to S. Das et al., PLB768 (2017) but with current precision **also consistent with 0**!

First measurement ALICE@LHC- large systematic/statistic error opposite sign & magnitude \approx 40 times larger than predictions

- → if $\Delta v_1 (D^0 \overline{D}^0)$ has an e.m. origin
 - → probe of deconfinement vs flavor
- ➤ constraint on e.m. field → quantitative studies of Chiral
 Magnetic Effect (by local CP violation at high T)
 + several other effects

Magnetic field modifies Z⁰ I[±] invariant mass and width in AA

Multicharm production + PbPb \rightarrow OO

$\Xi_{cc}^{+,++}$, Ω_{scc} , Ω_{ccc}			
Baryon			
$\Xi_{cc}^{+,++} = dcc, ucc$	3621	$\frac{1}{2}\left(\frac{1}{2}\right)$	
$\Omega_{scc}^+ = scc$	3679	$\overline{0}\left(\frac{1}{2}\right)$	
$\Omega_{ccc}^{++} = ccc$	4761	$0\left(\frac{3}{2}\right)$	

- Understand HQ in medium hadronization:
 [pure recombination , no fragmentation at low p_T at least]
- > Ω_{ccc} very sensitive (to cubic power) to $(dN_{charm}/dp_T)^3$

A system size scanning is like looking to see ΔE versus L \rightarrow dE/dx

• Makes a I order of magnitude difference depending on degree of equilibirum, while very small effect on D, $\Lambda_c \sim (dN_{charm}/dp_T)$, also due to charm # conservation & confinement

$\Omega_{ccc} p_T$ evolution from PbPb to OO

Deviation from scaling $N_c \left(\frac{N_c}{V}\right)^2$ due to different final p_T-charm distribution wrt PbPb

 $\Omega_{ccc} p_T$ spectrum evolution with system size unveil direct information of charm dN_c/dp_T with much larger sensitivity w.r.t. D^0 or $\Lambda_c \rightarrow$ precise info on interaction $D_s(T)$

Run 5-6 with ALICE3

Summary & Perspectives

- Open HF set up a strong connection among LQCD,NRQCD/phenomenology/exp. observables
- HQ is a more sensitive probe of bulk QGP, but till now has suffered from the lack of high statistic and access to exclusive observables
- ◆ Precision data @low pT | new observables | extension to bottom | multicharm → breakthrough toward solid determination/understanding of:
 - interaction strength at high T; agreement phenomenology with LQCD? & close to AdS/CFT? validity of NREFT/ QCD at finite T
 - understanding HQ hadronization universal/non-universal from pp@TeV to AA [Hadronization reveals pp@TeV as a small dense medium much closer to AA than e⁺e⁻ !?]
- Open HF as novel probe of Glasma studies [especially in pA]

Back-up Slide

Matter under the most extreme conditions

Fermi put Nothing above 10¹²K!

T >10¹²K ≈ 200 MeV → T= E≈1/L → L<1 fm inside a proton, but in the '50 there was nothing inside a proton uRHIC creates matter with $\varepsilon \sim ***$, $\rho \sim ***$ but also...

For highest vorticity $\omega \sim 10^{22} \text{ s}^{-1}$ F. Becattini [next talk]

Initial Production - $m_Q >> \Lambda_{QCD}$

HQ link to lattice QCD at finite T

\therefore Extract the Free Energy of $\overline{Q}Q \rightarrow \text{NREFT}/\text{T-matrix}$

→HQ Potential F=U-TS $q_0^2 \approx \vec{q}^4 / m_Q^2 << \vec{q}^2$ space-like transfer momenta. → V(r) + relat. corr. low screening into full Coulomb-like

→ Theoretical approach from T-matrix linked to LQCD and/or development of NRQCD at finite T

Scattering under a potential V(r,T) derived from IQCD Free-energy:

Van Hees, Greco, Rapp, PRL100 (2008)

Fit screened Cornell V(r)+ Im. part. (pert.-like ansatz)+ relativistic corr.

$$F_{Q\bar{Q}}(T,r) = -T \ln\left(\int_{-\infty}^{\infty} dE \; \frac{-1}{\pi} \frac{(V+\hat{\Sigma})_{I}(E)}{\left(E - \left(V+\hat{\Sigma}\right)_{R}\right)^{2} + \left(V+\hat{\Sigma}\right)_{I}^{2}(E)} e^{-\beta E}\right) \quad [SYF \; Liu + Rapp, '15]$$

Compare T-matrix $F_{Q\bar{Q}}(T,r)$ with lattice $F_{Q\bar{Q}}(T,r)$ to extract in-medium V(r) and $\hat{\Sigma}$

In 2005-06 ... first comparison to data

Relativistic Boltzmann equation at finite n/**s**

Bulk evolution

$$p^{\mu}\partial_{\mu}f_{q}(x,p) + m(x)\partial_{\mu}^{x}m(x)\partial_{p}^{\mu}f_{q}(x,p) = C[f_{q},f_{g}]$$

$$p^{\mu}\partial_{\mu}f_{g}(x,p) + m(x)\partial_{\mu}^{x}m(x)\partial_{p}^{\mu}f_{g}(x,p) = C[f_{q},f_{g}]$$

Equivalent to viscous hydro at $\eta/s \approx 0.1$

Free-streaming

Field interaction $\varepsilon - 3p \neq 0$

Collision term gauged to some **η/s≠ 0**

HQ evolution

$$p^{\mu}\partial_{\mu}f_{Q}(x,p) = \mathcal{C}[f_{q},f_{g},f_{Q}](x,p)$$

$$\stackrel{q}{\longrightarrow} f_{Q}(x,p) = \mathcal{C}[f_{q},f_{g},f_{Q}](x,p)$$

$$\stackrel{q}{\longrightarrow} f_{Q}(x,p) = \mathcal{C}[f_{q},f_{g},f_{Q}](x,p)$$

$$\stackrel{q}{\longrightarrow} f_{Q}(x,p) = \mathcal{C}[f_{Q}] = \frac{1}{2E_{1}} \int \frac{d^{3}p_{2}}{2E_{2}(2\pi)^{3}} \int \frac{d^{3}p'_{1}}{2E_{1'}(2\pi)^{3}} \times [f_{Q}(p'_{1})f_{q,g}(p'_{2}) - f_{Q}(p_{1})f_{q,g}(p_{2})] \times |\mathcal{M}_{(q,g)+Q}(p_{1}p_{2} \rightarrow p'_{1}p'_{2})|^{2} \times (2\pi)^{4}\delta^{4}(p_{1}+p_{2}-p'_{1}-p'_{2}),$$

Non perturbative dynamics \rightarrow M scattering matrices (q,g \rightarrow Q) evaluated by Quasi-Particle Model fit to **IQCD thermodynamics**

$$m_g^2(T) = \frac{2N_c}{N_c^2 - 1} g^2(T) T^2$$
$$g^2(T) = \frac{48\pi^2}{(11N_c - 2N_f) \ln\left[\lambda \left(\frac{T}{T_c} - \frac{T_s}{T_c}\right)\right]^2}$$

Impact of off-shell dynamics: M.L. Sambataro et al., *Eur.Phys.J.C* 80 (2020) 12, 1140

R_{AA} & v₂ with upscaled pQCD cross section

It's not just a matter of pumping up pQCD elastic cross section: too low R_{AA} or too low v_2

Ratio to D⁰ in pp

- Evidence of different "Fragmentation" Fractions in pp at LHC wrt e⁺e⁻ & e⁻p but similar to AA
- ➤ Coalesc.+Fragm. very close to pp FF
- ➤ Large Ξ_c, Ω_c only in coalescence, lack of yield in PYTHIA, SHM,...
- SHM+RQM baryon resonances would have a similar agreement (T~160-170 MeV) ... except for Ξ_c, Ω_c [Andronic et al., *JHEP* 07 (2021)]

"Fragmentation" Fractions in pp Catania Coalescence

- Evidence of different "Fragmentation" Fractions in pp at LHC wrt e⁺e⁻ & e⁻p but similar to AA
- ➤ Coalesc.+Fragm. very close to pp FF
- ➤ Large Ξ_c , Ω_c only in coalescence, lack of yield in PYTHIA, SHM-RQM,...

Seems only hadronization models treating pp as a small QGP fireball or allowing allowing local reconnection-recombination get close to data..

HF coalescence in EPOS4HQ

- Advantages of implementing coal. in EPOS4:
- Full dynamical realistic dynamics from ep, pp to AA
- Able to predict also a sizeable elliptic flows
 → more solid costraints to hadronization and the properties of the pp QCD matter created
 - → $v_2(\Lambda_c)/v_2(D^0)$ would give more insight into coal.
- Would PYHTIA-CR predict finite v₂ of D, Λ_c in pp? String shoving?

Going deeper into Λ_c enhancement

- Catania-coal & SHM-RQM/QCM natural good description of Σ_c/D^0 and $\Lambda_c \leftarrow \Sigma_c$ - PYTHIA-CR too many $\Sigma_c \rightarrow \Lambda_c/D^0$

Going deeper into Λ_c enhancement

Altmann et al., arXiv 2405.19137

- Catania-coal & SHM-RQM/QCM natural good description of Σ_c/D^0 and $\Lambda_c \leftarrow \Sigma_c$

- PYTHIA-CR too many $\Sigma_c \rightarrow \Lambda_c/D^0$; associated to a suppression of junction **diquark** *I*=1 (set ~ e^+e^- for string di-quark). Removing it \rightarrow Agreeement to data of $\Lambda_c \leftarrow \Sigma_c$

It goes in the direction of simply recombine according to SU(3) ~ simple colaescence

HF Baryon enhancement: impact on R_{AA}

 Λ_c production was mostly neglected in the first studies of R_AA, but:

- Strong impact on R_{AA} low-intermediate $p_T \rightarrow$ affect estimates of D_s
- Stronger coalescence \rightarrow smaller Ds
- $\Lambda_c/D \sim O(1)$ already in pp@TeV: pp ~ AA $\neq e^+e^-$, e^-p

HF Hadronization in jet shower – [S. Sadhu- this session]

Relevance of direct Bottom measurements

Just an first example, for the more plain observable R_{AA}....

workshop on QCD challenges from pp to AA collisions, Sept. 2024

Peak depends on the degree of b coupling to QGP medium is smeared-out in non prompt measurements

Direct B, Lb measurement at low $p_T \rightarrow$ need for Runs-6

Early results and predictions for Bottom in pp

- Again Need CR in PYTHIA -> seems too strong at forward (no rapidity dependence)
- EPOS4HQ+coal close to data (rapidity dependence?). At y=0 Catania results
- SHM +RQM about close, less the p_T shape (Frag.-Function)
- Coal./Fragm. ratio in pp larger for B than D

Slide su importanza large rapidity coverage

Figura Lc/D a rapidita finita

Strong adavantage to see the evolution with rapidity in the same system

- Disentangle size and parton density impact

Impact of diquark?

QCD challenges from pp to AA, EPJC 84(2024)

- □ <u>Coal. Approaches (Catania, LBT, EPOS4HQ</u>... *RR-TAMU*) → $\mathbf{v}_2(\Lambda_c) > \mathbf{v}_2(\mathbf{D}^0)$ at $p_T > 2$ GeV because Λ_c gets flow from 2 light quarks, D⁰ from 1+fragm.
- $\label{eq:linear} \square \ \underline{POWLANG} \ assume \ diquark \ hydrodynamical \ flow \ and \ \Lambda_c = (qq) + c \ -> v_2(\Lambda_c) \sim v_2(D^0) \ at \ intermediate \ p_T$

- □ Quark model gives $(us)_0$ large binding energy → small mass. If V(r,T) potential at finite T with large m_D ~ LQCD <u>Assumption</u>:
 - Again $(us)_0$ thermal yield flowing with the medium
 - More precise data needed to draw any conclusion
 → may be Run 4
 - H. Yun, S.H. Lee et al., PLB 851(2024)

Memory effect? Non-Markovian dynamics Pooja et al., PRD108(2023)

Generalized Langevin equation

$$\frac{dp(t)}{dt} = -\int_0^t dt' \gamma(t, t') p(t') + \eta(t)$$
$$\langle \eta(t_1)\eta(t_2) \rangle = \frac{\mathcal{D}}{\tau} \langle h(t_1)h(t_2) \rangle,$$
$$\langle h(t_1)h(t_2) \rangle \cong \kappa \left(\frac{t_1}{\tau}\right)^{\beta-1} \left(\frac{t_2}{\tau}\right)^{\beta}$$

There could be correlations in the initial glasma and toward the phase transition

➤ Exponential memory function t ~ 1 fm/c → not significant final effects. In many area of physics and chemistry there power law function

M. Ruggieri et al., PRD 106(2022)

Memoryless $\langle p_x \rangle = \langle p_{x0} \rangle e^{-t/\tau_{therm}}$ starting from FONNL checking that it leads to same $\Upsilon_{therm} = K/K_{eq}$ for different D For memory we look at the same Υ_{therm} to estimate τ_{therm}

For bottom even a very strong memory function leaves the estimate of D_s nearly unaffected $\tau \ll \tau_{therm} \sim 5 - 10 \ fm/c$

Expected a smaller D_s to reproduce similar $R_{AA_{ns}}$

Extension to higher order anisotropic flows $v_n(p_T)$

ESE tecnique and v_n correlations

Selection of events with the <u>same centrality</u> but different initial geometry on the basis of the magnitude of the second-order harmonic reduced flow vector q_2 .

Predictions for D mesons

ESE: v_2 and spectra (20% small/large q_2)

Data taken from ALICE collaboration: Phys.Lett.B 813 (2021) 136054

▶ v_2 (large- q_2 /small- q_2) ≥ v_2 (unbiased) of about 50% in both 0-10% and 30-50% centrality

 \blacktriangleright The standard approach for R_{AA} and v₂ works for ESE observables

Y. Sun et al. in preparation

Going deeply into Hot QCD matter

Possible because at LHC one starts to create about than 10,000 particle per event

A first study of HQ in a Glasma What happens for 0+<t<0.3-0.5 fm/c?

$$\langle \rho^a_A(x_T) \rho^b_A(y_T)
angle = (g^2 \mu_A)^2 \delta^{ab} \delta^{(2)}(x_T - y_T),$$

Inizialization by Mc-Lerran/Venugopalan model PRD49(1994)

$$\frac{A_i^a(x)}{dt} = E_i^a(x), \tag{16}$$

 $\frac{dE_{i}^{a}(x)}{dt} = \sum_{j} \partial_{j} F_{ji}^{a}(x) - \sum_{b,c,j} f^{abc} A_{j}^{b}(x) F_{ji}^{c}(x).$ (17)

Formation time of transverse E-B fields $g^2\mu\tau \approx 1 \approx \tau_{form}$ (charm) after $\tau \cong Q_s^{-1}$, all components are equal

The very early stage has left some imprints?

J. Liu, S. Plumari, K. Das, M. Ruggieri, VG, Phys. Rev. C 102 (2020) 4, 044902

Role of HQ also in the CGC/Glasma studies

- ♦ HQ dynamics starting from $\tau_0 \approx 1/2m_Q \approx 0.02$ -0.08 fm/c
- ✤ Relevance to HQ in pA collisions

→ Explain $R_{pA} \sim 1$ and large v_2 of D meson → may have a key role on D-<u>D</u> angular correlation

• May affect the determination of $D_s(T)$

 \rightarrow modify (improve) the relation R_{AA} & v₂ toward a smaller D_s(

A substantial goal for HL-LHC ...

The issue is not that the unknown early stage would destroy our current picture, but to find signatures from the early stage dynamics (~ for Early

Impact of T dependent interaction on R_{AA} – v₂

S. Das et al., PLB747 (2015) 260

Chiral Magnetic Effect and P & CP violation

Reveals a local Parity breaking in Strong Interactions

Consider a homogeneous, strong magnetic field (Warringa, 2008):

Momentum Spin $\begin{bmatrix} \mathbf{A} & \mathbf{A} & \mathbf{A} \\ \mathbf{A$

A local axial $\mu_5 = \mu_{R-} \mu_L$ (topological μ_{θ}) induces an electric current J_v along B \rightarrow charge separation No *C*-odd but *CP*-odd

Expected exp. effect: dipole modulation of azimutal distribution

$$\frac{dN_{\pm}}{d\phi} \sim 1 + 2v_1\cos(\Delta\phi) + 2v_2\cos(2\Delta\phi) + \dots + 2a_{\pm}\sin(\Delta\phi)$$

Observed in Dirac semi-metals – Q. Li et al., Nature Physics 12 (2016)

\mathbf{v}_1 large sensitivity in the low \mathbf{p}_T

Observables sensitive to spatial inhomogeneity of HQ distribution, like the transverse flow v1, can provide a richer information on HF transport coefficients

Z⁰ mass and width modification in AA

To be done vs centralities, systems,...

E.m. field: a main source of uncertainty

Case A

E-B fields like Gursoy et al., PRC89(2014) Medium at t<0 + eq. medium σ_{el} =0.023 fm⁻¹

Case **B** and **C**

B an **C** similar B_y up to t< 1 fm/c

* e.m. field $\sigma_{\rm el}\,$ as for RHIC

→ $\Delta v_1(D^0)$ order magnitudes smaller than ALICE data + opposite sign

* e.m. with $B_y(t=0)$ as in vacuum \rightarrow Large $\Delta v_1(D^0)$ but **opposite** direction

* e.m. with $B_y(t=0)$ as in vacuum, $E_x \approx 0.5 B_y$ (t=0.5-1 fm/c) $\rightarrow \Delta v_1(D^0) \approx ALICE Data$ (1/t ideal MHD)

Time derivative of $B_y(t)$ even more relevant than absolute values"⁷⁶

If $\Delta v_1 = v_1(D^0) - v_1(\underline{D}^0)$ is of electromagnetic origin \rightarrow we'd have a proof of the formation of the QGP Is there some complementary way of proving it?

> Is there a further way to pin down the e.m field strength? Such a large splitting (in ALICE) has an electromagnetic origin?

Probing the electromagnetic fields in ultra-relativistic collisions with leptons from Z₀ decay and charmed mesons

 $\tau_{Z^0} = 1/2m_{Z^0} = 0.0011 \text{ fm}/c$

What one expects?

- No damping from medium interaction
- Massless more easily to drag
- Charge 1.5 times larger

One expects same sign and $\Delta v_1(l^+, l^-) > \Delta v_1(D^0, \underline{D}^0)$?!

- Leptons from Z⁰ decay are separable by other sources
- − τ_{decay}(Z⁰) = τ_{form}(charm)=0.08 fm/c: they go through the e.m. fields at the same time
 → meanfigul look at the correlation Δv₁(D⁰, <u>D</u>⁰) and Δv₁(l⁺, l⁻)

V_1 splitting for D^0 - \underline{D}^0 and I^+ - I^- from Z^0 decay and

· No medium strong interaction

 $\tau_{decay}(Z^0) = \tau_{form}(charm) = 0.08 \text{ fm/c}$

- Massless more easily to drag

· Charge 1.5 times larger

Surprises:

- 1) $\Delta v_1(l^+, l^-) < \Delta v_1(D^0, \underline{D}^0)$ even if $\Delta p_X(l) \approx 2^* \Delta p_X(D)$
- 2) even the sign of $\Delta v_1 (l^+, l^-)$ can be opposite!? not because wins electric field

 Δp_X is always positive: ≈ 0.3 GeV for D charm ≈ 0.7 GeV for leptons with a weak p_T dependence

Bottom R_{AA}: Boltzmann = Langevin

In bottom case Langevin approximation \approx Boltzmann But Larger M_b/T (\approx 10) the better Langevin approximation works

Strangeness in pp for HF sector

- Catania Coalesc.+Frag. quite ok, but it is large the fragmentation contribution
- POWLANG/LCN too high, but the approach has only recombination also for mesons
- PYTHIA-CR seems to have a lack of strangeness [see also $\Xi_{\rm c}]$

Coalescence in pp@5 ATeV

V. Minissale, Plumari, VG, PLB 821 (2021)

Large uncertainty in the exisiting Ω_c resonances

Seems to work from pp to PbPb \rightarrow multi-charm production from pp to PbPb Error band correspond to $\langle r^2 \rangle$ uncertainty in quark model

D, Λ_c yields constrained by charm # conseervation because they dominate the yield
 Instead Ω_{ccc} is also very sensitive to wave function - <r²>

How HQ interact with the medium [low-medium p_T]

✤ <u>3 kinds of approaches:</u>

a) **pQCD inspired + HTL**

[*Nantes*(+*rad.*) ... *Torino, LBL-Duke*] LO diagrams, propagator with reduced IR regulator $(q^2 - \kappa m_d^2(T))^{-1}$ match **soft scale** resummed in **HTL**

b) **Quasi Particle Model + tree level diagrams** [*Catania, Frankfurt-PHSD, QLBT o CoLBT,...*] **g(T) from a fit to IQCD-EoS screened propagators with m**_D ~ **gT**

c) **T-matrix:** scattering under V(r,T) deduced from IQCD (TAMU)

HQ momentum diffusion: lattice-QCD

From the non-relativistic limit of the Langevin equation one gets

$$\frac{dp^{i}}{dt} = -\eta_{D}p^{i} + \xi^{i}(t), \quad \text{with} \quad \langle \xi^{i}(t)\xi^{j}(t')\rangle = \delta^{ij}\delta(t-t')\kappa$$

hence $\kappa = \frac{1}{3}\int_{-\infty}^{+\infty} dt \langle \xi^{i}(t)\xi^{i}(0)\rangle_{\mathrm{HQ}} = \frac{1}{3}\int_{-\infty}^{+\infty} dt \underbrace{\langle F^{i}(t)F^{i}(0)\rangle_{\mathrm{HQ}}}_{\equiv D^{>}(t)}$

Lattice-QCD simulations provide Euclidean ($t = -i\tau$) electric-field ($M = \infty$) correlator

$$D_{E}(\tau) = -\frac{\langle \operatorname{Re}\operatorname{Tr}[U(\beta,\tau)gE^{i}(\tau,\mathbf{0})U(\tau,0)gE^{i}(0,\mathbf{0})]\rangle}{\langle \operatorname{Re}\operatorname{Tr}[U(\beta,0)]\rangle}$$

How to proceed? κ comes from the $\omega \to 0$ limit of the FT of $D^>$. In a thermal ensemble $\sigma(\omega) \equiv D^>(\omega) - D^<(\omega) = (1 - e^{-\beta\omega})D^>(\omega)$, so that

$$\kappa \equiv \lim_{\omega \to 0} \frac{D^{>}(\omega)}{3} = \lim_{\omega \to 0} \frac{1}{3} \frac{\sigma(\omega)}{1 - e^{-\beta\omega}} \underset{\omega \to 0}{\sim} \frac{1}{3} \frac{T}{\omega} \sigma(\omega)$$

From $D_E(\tau)$ one extracts the spectral density according to

$$D_{E}(\tau) = \int_{0}^{+\infty} \frac{d\omega}{2\pi} \frac{\cosh(\tau - \beta/2)}{\sinh(\beta\omega/2)} \sigma(\omega)$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Two Main Observables in HIC

✤ Nuclear Modification factor

$$R_{AA}(p_T) = \frac{d^2 N^{AA} / dp_T d\eta}{N_{coll} d^2 N^{NN} / dp_T d\eta}$$

- Modification respect to pp
- Decrease with increasing partonic interaction

✤<u>Anisotropy p-space</u>: Elliptic Flow v₂

v₁ of **D** mesons: quantitative study

 $W(x_{\perp}, \eta_s) = 2 \left(N_A(x_{\perp}) f_{-}(\eta_s) + N_B(x_{\perp}) f_{+}(\eta_s) \right)$

$$f_{+}(\eta_{s}) = f_{-}(-\eta_{s}) = \begin{cases} 0 & \eta_{s} < -\eta_{m} \\ \frac{\eta_{s} + \eta_{m}}{2\eta_{m}} & -\eta_{m} \le \eta_{s} \le \eta_{m} \\ 1 & \eta_{s} > \eta_{m} \end{cases}$$