Heavy-quark transport and hadronization, including multi-heavy-flavour: large & small collision systems

__

High Luminosity LHC and Hadron Colliders, LNF, Frascati, 1-4 Ottobre 2024

Finanziato

Outline ___

- ² **Basic concepts & motivation for HQ physics in HotQCD matter**
- ² **Results from the first stage:**
	- strong <u>non-perturbative</u> HQ dynamics [agreement to LQCD?!, close to AdS/CFT limit?]
	- non-universal hadronization \neq e⁺e⁻ in AA, but seems even in pp@TeV
- \diamond Why precise measurement at low p_T , extension to bottom & access to new **observables allow for a breakthrough**
- \diamond The relevance of multi-charm production and scan from PbPb \rightarrow OO :

Basic Scales and specific of HQ

Why Heavy?

- \triangleright *PARTICLE Physics*: $m_{c,b}$ >> Λ_{OCD} pQCD initial production Ø *PLASMA Physics*:
	- **- mc,b >> TRHIC,LHC** no thermal production
	- $m_{c,b}$ >> $gT_{RHIC, LHC}$ soft scatterings \rightarrow Brownian motion

Specific Features:

- Ø t**0≈ 1/2mQ <<** t**QGP** witness of all the QGP evolution
- $\triangleright \tau_{th} \approx \tau_{OGP}$ \triangleright $\tau_{q,g}$ carry more information of their evolution

Basic Scales and specific of HQ

Why Heavy?

- \triangleright *PARTICLE Physics*: $m_{c,b}$ >> Λ_{QCD} pQCD initial production Ø *PLASMA Physics*:
	- **- mc,b >> TRHIC,LHC** no thermal production
	- $m_{c,b}$ >> $gT_{RHIC, LHC}$ soft scatterings \rightarrow Brownian motion

Specific Features:

Ø t**0≈ 1/2mQ <<** t**QGP** witness of all the QGP evolution

 \triangleright **τ**_{th} ≈ **τ**_{QGP} >> **τ**_{q,g} carry more information of their evolution

- For HQ we know initial p_T distribution at variance with light quark & gluons
- **HQ not created at hadronization** $m_{b,c}$ **>>** Λ_{QCD} **,T :**

HQ link to Lattice QCD at finite T

v **Ab-initio Diffusion Transport Coefficient**

Spectral function ρ_F extracted **from euclidean color-electric correlator** $D_F(\tau) \rightarrow$

Kubo formula diffusion in the $p\rightarrow 0$ limit:

$$
\frac{D_p}{T^3} = \lim_{\omega \to 0} \frac{T \rho_E(\omega)}{\omega} \longrightarrow D_s = \frac{T^2}{D_p} = \frac{T}{M_Q} \tau_{th}
$$

 D_s determines diffusion (brownian limit) and by fluctuation-dissipation theorem: HQ momentum drag $\gamma \rightarrow$ thermalization time

$$
p\big\rangle = p_0 e^{-\gamma t} \qquad \left\langle \Delta p^2 \right\rangle = 3D_p / \gamma (1 - e^{-2\gamma t}) \qquad D_s = \frac{T}{M\gamma} = \frac{T^2}{D_p} = \frac{T}{M} \tau_{th}
$$

Approximations/limitations:

- *Extraction of* $\rho_F(\omega)$ from $D_F(\tau)$ is not a well posed problema with *a finite limited # of points*
- *infinite HQ massvs. charm quark, continuum extrapolation…*
- *quenched Nf =0*à *to non quenched QCD (2023-24)*

HQ allow for developing a NRQCD EFT at finite T & many-body T-matrix from $V(r,T)$ by LQCD

Standard Dynamics of Heavy Quarks in the QGP

- \div This is the main set up at least at $p < 8-10$ GeV
- \Diamond Brownian motion challenged for charm (M_c ~ 3 T~ gT): Relativistic Boltzmann dynamics
- \triangle At p_T > 10 GeV radiative E_{loss}, q_{hat}, jet physics [Cunqueiro Mendez, previous talk]

Studying the HF in uRHIC

R_{AA} and v₂ evolution & correlation

No interaction means $R_{AA}=1$ and $v_2=0$. more interaction decrease R_{AA} and increase v_2

R_{AA} is "generated" faster than v_2

The relation between RAA and time is **not trivial** and depend on the time (temperature) dependence of the interaction.

Diffusion Coefficient of Charm Quark:first stage

uRHIC created matter is the **Hot QCD matter not in perturbative regime**!

X. Dong and VG, Prog.Part.Nucl.Phys. (2019)

v Largely non-perturbative Ds (close AdS/CFT) Non perturbative interaction even if $M_{\rm O} >> \Lambda_{\rm OCD}$ and $M_{\rm Q} >> m_q$

$$
\tau_{th} = \frac{M}{2\pi T^2} (2\pi T D_s) \approx 1.8 \frac{2\pi T D_s}{(T/T_c)^2} \text{ fm/c}
$$

pQCD, Asymptotic free regime

Not a model fit to lQCD data! Phenomenology R_{AA} & $v_2 \approx$ Lattice QCD

Infinite Strong Coupling (AdS/CFT)

Diffusion of Charm Quark: first stage $\sum_{x \text{. Dong & VG, Prog. Part. Nucl. Phys. (2019)}}$

*Main differences in comparing to LQCD-AdS/CFT:

- quenched QCD (Yang-Mills) + $M_0 \rightarrow \infty$
- phenomenology at intermediate $p_T LQCD(AdS/CFT)$ at $p \rightarrow 0$

*Main sources of differences in models:

- impact of hadronization («unexpected» large baryon production)
- momentum depedence of matrix elements
- data not enough precise/observable not enough constraining

Diffusion of Charm Quark: first stage $\sum_{x \text{. Dong & VG, Prog. Part. Nucl. Phys. (2019)}}$

New LQCD 2023-24 at least a factor of 2 smaller

*Main differences in comparing to LQCD-AdS/CFT:

- quenched QCD (Yang-Mills) + $M_0 \rightarrow \infty$
- phenomenology at intermediate $p_T LQCD(AdS/CFT)$ at $p \rightarrow 0$

*Main sources of differences in models:

- impact of hadronization («unexpected» large baryon production)
- momentum depedence of matrix elements
- data not enough precise/observable not enough constraining

QGP diffuse Charm quarks like a "perfect fluid"

Impact of HF in-medium Hadronization

an effect that brings up toward experimental data, allows to disentagle the two

 $f_M(P_H = p_1 + p_2) \approx f_q(p_1) \otimes f_{\overline{q}}(p_2) \otimes \Phi_M(\Delta x, \Delta p)$ Phase-space coalescence: quark recombination Independent Fragmentation $f_H(P_H = zp_T) = f_{q,g}(p_T) \otimes D_{q,g \to H}(z)$, $z < 1$

 \rightarrow Add momenta: P_T^H from low p_T quark \rightarrow Enhance elliptic flow v₂ by n_q scaling $n_q v_2 (n_q p_T)$ Hadronization play an important role in AA to determine R_{AA} and v_2 of D meson

 \rightarrow Determintation of transp. coeff. D_s(T)

… but there has been a surprise both in AA but even in pp@TeV

In-medium modification of hadronization even in pp@TeV

- Large Heavy Baryon to Meson production \sim a factor of 10 larger than in e+e- or PYTHIA
- Breaking of Universal Fragmentation Function already in pp in HF sector

HF hadronization has stimulated several developments

- **PYHTIA** beyond Leading Color $(LC) \rightarrow$ Color Reconnection (CR) in pp
- Coalescence+Fragmentation approach applied also to pp
- Local Color Recombination: **POWLANG** in AA and in pp
- Ø Inclusion of HF Coalescence+ Fragmentation in **EPOS** (pp &AA)

HF hadronization has stimulated several developments

- \triangleright **PYHTIA** beyond Leading Color (LC) \rightarrow Color Reconnection (CR) in pp
- \triangleright Coalescence+Fragmentation approach applied to pp
- Local Color Recombination: **POWLANG** in AA and in pp
- Ø Inclusion of HF Coalescence+ Fragmentation in **EPOS** (pp &AA)

 \triangleright Yields modified from e⁺e⁻ (e⁻p) to pp, then from pp to AA mostly coupling to flowing QGP medium modifies p_T shape of the ratio Λ c/D?

HF hadronization has stimulated several developments

- \triangleright **PYHTIA** beyond Leading Color (LC) \rightarrow Color Reconnection (CR) in pp
- \triangleright Coalescence+Fragmentation approach applied to pp
- Local Color Recombination: **POWLANG** in AA and in pp
- Ø Inclusion of HF Coalescence+ Fragmentation in **EPOS** (pp &AA)

 \triangleright Yields modified from e⁺e⁻ (e⁻p) to pp, then from pp to AA mostly coupling to flowing QGP medium modifies p_T shape of the ratio Λ c/D?

PYTHIA Color Reconnection/ Local Color neutralization

$(\bar{\bar{q}})$ $(\bar{\bar{q}})$ (q)

Altmann et al., arXiv 2405.19137 Leading Color (N_c $\rightarrow \infty$): Prob. of Local Color neutralization $\rightarrow 0$

- \Box When string color reconnection is switched-on in pp \rightarrow Very large baryon Λ_c , Σ_c enhancement
	- \rightarrow not so relevant for D, like coalescence+fragmentation
- Ø Not indipendent strings **Local reconnection** à **string energy minimization**à **smaller invariant mass** close to D meson states

(a) Mesonic reconnection.

(b) Baryonic reconnection.

PYTHIA Color Reconnection/ Local Color neutralization

$(\bar{\bar{q}})$ $(\bar{\bar{q}})$ (q)

(a) Mesonic reconnection.

(b) Baryonic reconnection.

Altmann et al., arXiv 2405.19137 Leading Color (N_c $\rightarrow \infty$): Prob. of Local Color neutralization $\rightarrow 0$

- \Box When string color reconnection is switched-on in pp \rightarrow Very large baryon Λ_c , Σ_c enhancement
	- \rightarrow not so relevant for D, like coalescence+fragmentation
- Ø Not indipendent strings **Local reconnection** à **string energy minimization**à **smaller invariant mass** close to D meson states

Needed switch-off of **diquark** *l=1* junction suppression *(set for e⁺e⁻). Removing it* \rightarrow *Agreeement to data of* $\Lambda_c \leftarrow \Sigma_c$ It goes in the direction of simply recombine according to SU(3)

POWLANG Local Color Neutralization \overline{a} and \overline{a} and \overline{a} and \overline{a} are \overline{a} and \overline{a} are \overline{a} are \overline{a} and \overline{a} are \overline{a} and \overline{a} are \overline{a} and \overline{a} and \overline{a} and \overline{a} and \overline{a} and \overline{a} and

A. Beraudo et al., EPJC82(2022) [AA] A. Beraudo et al., PRD109(2024) [pp]

Charm recombine *locally* with quarks & diquarks assumed thermally distributed $+$ radial flow:

$$
n_l \cong g_s g_l \frac{T_H m_l^2}{2\pi^2} K_2 \left(\frac{m_l}{T_H}\right) \qquad l = q, \bar{q}, s, \bar{q}, (ud)_0, (sq)_0, (sq)_1, \dots
$$

Dense medium (pp &AA) \rightarrow **local** color statistical neutralization **Narrow invariant M distribution close to D meson masses** not large M string breaking with large y endpoints

 \rightarrow Qualitatively similar to PYTHIA with local CR Coalescence or Resonance Recombination including strong impact on $v_2(p_T)$ from $c \rightarrow D$, Λ_c (all recomb.)

Studying the HF in uRHIC after Run2

- \triangleright Most models studies at p_T>1.5-2 GeV and mainly not including impact of hadroning into Λ_c
- \triangleright To be done a new assesement of D_s(T) with upgraded approach:
	- \rightarrow compare to LQCD & AdS/CFT **need data** $p_T \rightarrow 0$
	- \rightarrow need precision data at low p_T not only for D, necessary Λ_c , important Ξ_c Ω_c
	- 20 \rightarrow need not only R_{AA} and v₂ but also more esclusive observables \rightarrow needed HL-LHC

"See" Hadronization mechanism through elliptic flow

If the enhancement of the yield comes from quark coalescence it should be associated to \rightarrow Large v₂ of $\Lambda_c \sim n_q v_{2q} (n_q p_T)$, visible at intermediate p_T Effect to be measured in AA; will it be seen also in pp? $\qquad \qquad$ [for AA Run3-4]

- \checkmark It should be also confirmed for Ξ_c [Run 5-6]
- \triangleright Would PYHTIA-CR predict finite v_2 of D, Λ_c in pp? by String shoving? Can it predict D, Λ_c systematics?

"See" Hadronization mechanism through elliptic flow

If the enhancement of the yield comes from quark coalescence it should be associated to \rightarrow Large v₂ of $\Lambda_c \sim n_q v_{2q} (n_q p_T)$, visible at intermediate p_T Effect to be measured in AA; will it be seen also in pp? $\qquad \qquad$ [for AA Run3-4]

Minissale, Plumari, VG, in preparation **Example 22** and the set of t

- \checkmark It should be also confirmed for Ξ_c [Run 5-6]
- \triangleright Would PYHTIA-CR predict finite v_2 of D, Λ_c in pp? by String shoving? Can it predict D, Λ_c systematics?

Methods/tools of AA allow better insight into Hadronization in pp.

Able to «see» even the local Temperature. fluctuations of the QGP

Transverse view

Relativistic HIC in '90s, '00 till about 2005 Anisotropies only with **even** parity due to symmetry \rightarrow v₂ elliptic flow

Transverse view of HIC,nowdays

All harmonics appearing with different weights.

$$
v_n = \langle \cos(n\varphi) \rangle
$$

When including fluctuations, all moments appear:

Able to «see» even the local Temperature. fluctuations of the QGP

Transverse view

Relativistic HIC in '90s, '00 till about 2005 Anisotropies only with **even** parity due to symmetry \rightarrow v₂ elliptic flow

All harmonics appearing with different weights.

 $v_n = \langle \cos(n\varphi) \rangle$

When including fluctuations, all moments appear:

Transverse view of HIC, nowdays A powerful not yet exploited for HQ especially at low p_T lack statistics

HL-LHC allows to access v_n light-HQ correlation

Event-by-event coupling of the anisotrpy of the bulk (light) and the charm (heavy) one \rightarrow Much more precise determination of the strength interaction: drag $\Gamma \sim 1/D_s$

A very solid and high precision comparison to LQCD, development of NRQCD-EFT, quantification of interaction only by D_s full Brownian motion) requires a full HQ, but $M_c \sim gT$, $\langle p \rangle$ at T \sim 300-500 MeV \rightarrow full Heavy is Bottom

Relevance of direct Bottom measurements __

- Quite close to **M**→ ∞ & **Non Relativistic** limit
	- \rightarrow more solid comparison to LQCD/NRQCD for D_s(T)
- \triangleright M_O(T) \gt T, gT full **Brownian motion**, satisfy fluctuations dissipation theorem
	- \rightarrow damps uncertainties in transport evolution (Langevin, Boltzmann, Kadanoff-Baym...)
- \triangleright Impact of **hadronization** on dN/dp_T & v_n(p_T) moderate and less different by fragmention

Relevance of direct Bottom measurements __

Quite close to **M**→ ∞ & **Non Relativistic** limit

- \rightarrow more solid comparison to LQCD/NRQCD for D_s(T)
- \triangleright M_O(T) \gt T, gT full **Brownian motion**, satisfy fluctuations dissipation theorem
	- \rightarrow damps uncertainties in transport evolution (Langevin, Boltzmann, Kadanoff-Baym...)
- \triangleright Impact of **hadronization** on dN/dp_T & v_n(p_T) moderate and less different by fragmention

Relevance of direct Bottom measurements __

- Quite close to **M**→ ∞ & **Non Relativistic** limit
	- \rightarrow more solid comparison to LQCD/NRQCD for D_s(T)
- \triangleright M_O(T) \gt T, gT full **Brownian motion**, satisfy fluctuations dissipation theorem
	- \rightarrow damps uncertainties in transport evolution (Langevin, Boltzmann, Kadanoff-Baym...)
- \triangleright Impact of **hadronization** on dN/dp_T & v_n(p_T) moderate and less different by fragmention
- \triangleright Larger $\tau_{th}^{b} \sim M/T$ τ_{th}^{c} more sensitive to dynamical evolution: carry more info

Extension of QPM to bottom dynamics: \mathbf{R}_{AA} \vee **₂,** \vee **₃**

- \triangleright No parameters changed wrt charm (only M_b), but :
	- agreement within still large uncertainty
	- no direct B data (semileptonic decay)
	- $-$ lack v_3
	- v_n (hard)- v_n (soft) correlation

 \rightarrow Need for luminosity of Run $5-6$

M.L. Sambataro et al., *PLB* 849(2024)

HQ probe of CGC/Glasma phase 0+<t<0.3 fm/c

Color Glass Condensate (CGC) is the high-energy limit of QCD in the BFKL direction in the plane $[Q^2, x]$?

 g^2 µ=3-5GeV

 0.1

 $g^2\mu\tau$

 g^2 μτ≈0.1 fm/c

time

 $\overline{10}$

 \triangleright The unknown very early stage would not destroy our current picture, but we look for signatures to spot from this phase [~ Early Universe, inflation]

Impact of Glasma phase

Potential impact on AA observables (starting at $\tau = \tau_{\text{form}}$ - SU(2))

• Opposite to HQ in QGP: Dominance of diffusion-like \rightarrow initial **enhancement of R**_{AA}(p_T)!!!

• Gain in v_2 : larger interaction in QGP stage needed to have same $R_{AA}(p_T)$ [18% smaller D_s]

High precison needed Run4, and likely alone not conclusive

Impact of Glasma phase

Glasma impact on angular $Q\overline{Q}$

First study of azimuthal $Q\overline{Q}$ correlation: large decorellation in only 0.2 fm/c Significant effect of glasma on HQ!

Calculation in SU(3) +longitudinal expansion

D. Avramescu et al., arXiv:2409.10.565. [hep-ph]

pA collision should keep memory of it especially correlating it to R_{AA} , v_n .

- Identify Glasma phase
- quantify in medium $E_{loss} D_s(T)$
- solve the puzzle od $R_{pA} \sim 1$ and v_2 large

Accessible with high precsion for D and Λ_c from Run 5-6

Glasma

Nucleus \rm{B}
HQ Surprise also transverse flow

STAR 5-40% $\eta_{\rm m} = 1.3$ $x10^{-2}$ $dv_1/dy|_{exp} \sim -0.0025$ Au+Au @ RHIC 200 GeV, $b = 7$ fm

 0.5

 η

Would you expect charm quark to have a smaller v_2 ? Or a smaller one due to its mass?

Very surprising!

 v_1 (HQ) ~ 30 times v_1 light hadrons $(\pi, K, ...)$

HQ Surprise also transverse flow

Charm as a probe of huge B Magnetic field

Schematic calculation: early time behavior quite uncertain theoretically (*non eq., back-reaction, glasma*…)

a current in opposite direction: delicate balance! [Cancellation at 95% level]

HQ best probe for v₁ from e.m. field:

- $t_{\text{form}} \approx 0.08$ fm/c when By is \approx its maximum
- No contribution from neutral gluons diff. from π^{+}/π^{-} , p/ \bar{p}
- $\tau_{\text{th}}(c) \approx \tau_{\text{OGP}} >> \tau_{\text{e.m}}$ (keep more memory effects)

v_1 transverse flow current measurement

 0.5

Oliva, Plumari, V.G., JHEP(2020)

 -0.5

 $STAR@RHIC: d(\Delta v_1)/dy|_{exp} = -0.011 \pm 0.024(stat) \pm 0.016(syst)$

≈ 10 times larger than charged**,** similar to S. Das et al., PLB768 (2017) but with current precision **also consistent with 0!**

First measurement ALICE@LHC- large systematic/statistic error opposite sign & magnitude ≈ 40 times larger than predictions

Need for high precision. likely Run 4 or 5

v_1 transverse flow current measurement

Oliva, Plumari, V.G., JHEP(2020)

 $STAR@RHIC: d(\Delta v_1)/dy|_{exp} = -0.011 \pm 0.024(stat) \pm 0.016(syst)$

≈ 10 times larger than charged**,** similar to S. Das et al., PLB768 (2017) but with current precision **also consistent with 0!**

First measurement ALICE@LHC- large systematic/statistic error opposite sign & magnitude ≈ 40 times larger than predictions

Need for high precision. likely Run 4 or 5

- \triangleright if $\Delta v_1(D^0 \overline{D}^0)$ has an e.m. origin
	- à **probe of deconfinement vs flavor**
- \triangleright constraint on e.m. field \rightarrow quantitative studies of **Chiral Magnetic Effect** (by **local CP violation** at high T) + several other effects

Magnetic field modifies Z^0 \vert [±] invariant mass and width in AA

Multicharm production + PbPb \rightarrow **OO**

Understand HQ in medium hadronization: [pure recombination, no fragmentation at low p_T at least] $\triangleright \Omega_{ccc}$ very sensitive (to cubic power) to $(dN_{\text{charm}}/dp_T)^3$

A system size scanning is like looking to see ΔE versus $L \rightarrow dE/dx$

43

◆ Makes a I order of magnitude difference depending on degree of equilibirum, while very small effect on D, $\Lambda_c \sim (dN_{\text{charm}}/dp_T)$, also due to charm # conservation & confinement

Ω_{ccc} **p_T** evolution from PbPb to OO Minissale et al., EPJC84(2024)

Deviation from scaling $N_c \left(\frac{N_c}{V}\right)$? 3 due to different final p $_\Gamma$ -charm distribution wrt PbPb

 Ω_{ccc} p_T spectrum evolution with system size unveil direct information of charm dN_c/dp_T with much larger sensitivity w.r.t. D⁰ or Λ_c \rightarrow precise info on interaction D_s(T)

Run 5-6 with ALICE3

Summary & Perspectives

- v Open HF set up a strong connection among LQCD,NRQCD/phenomenology/exp. observables
- v HQ is a more sensitive probe of bulk QGP , but till now **has suffered from the lack of high statistic and access to exclusive observables**
- v Precision data *@low pT***|***new observables***|***extension to bottom***|***multicharm* à breakthrough toward solid determination/understanding of:
	- interaction strength at high T; agreement phenomenology with LQCD? & close to AdS/CFT? validity of NREFT/ QCD at finite T
	- understanding HQ hadronization universal/non-universal from pp@TeV to AA *[Hadronization reveals pp@TeV as a small dense medium much closer to AA than e+e-!?]*
- Open HF as novel probe of Glasma studies [especially in pA]

Back-up Slide

Matter under the most extreme conditions

For highest vorticity $\omega \sim 10^{22}$ s⁻¹ F. Becattini [next talk]

Initial Production - m_Q>> Λ _{QCD}

HQ link to lattice QCD at finite T

Extract the Free Energy of $\overline{Q}Q \rightarrow NREFT/T-matrix$ $\frac{1}{2}$

 \rightarrow HQ Potential F=U-TS $q_0^2 \approx \vec{q}^4 / m_0^2 \ll \vec{q}^2$ space-like transfer momenta. $\rightarrow V(r)$ + relat. corr. low screening into full Coulomb-like

 \rightarrow Theoretical approach from T-matrix linked to LQCD and/or development of NRQCD at finite T

Scattering under a potential $V(r,T)$ derived from IQCD Free-energy:

Van Hees, Greco, Rapp, PRL100 (2008)

Fit screened Cornell $V(r)$ + Im. part. (pert.-like ansatz)+ relativistic corr.

$$
F_{Q\bar{Q}}(T,r) = -T \ln \left(\int_{-\infty}^{\infty} dE \frac{-1}{\pi} \frac{(V+\hat{\Sigma})_I(E)}{\left(E - (V+\hat{\Sigma})_R\right)^2 + \left(V+\hat{\Sigma}\right)_I^2(E)} e^{-\beta E} \right) \quad \text{[SYF Liu + Rapp, '15]}
$$

Compare T-matrix $F_{O\bar{O}}(T,r)$ with lattice $F_{O\bar{O}}(T,r)$ to extract in-medium $V(r)$ and Σ

In 2005-06 … first comparison to data

Relativistic Boltzmann equation at finite η/s

Bulk evolution

$$
p^{\mu}\partial_{\mu}f_q(x,p) + m(x)\partial_{\mu}^{x}m(x)\partial_{p}^{\mu}f_q(x,p) = C[f_q, f_g]
$$

$$
p^{\mu}\partial_{\mu}f_g(x,p) + m(x)\partial_{\mu}^{x}m(x)\partial_{p}^{\mu}f_g(x,p) = C[f_q, f_g]
$$

Equivalent to viscous hydro at $\eta/s \approx 0.1$

Free-streaming Field interaction Collision term $\varepsilon - 3p \neq 0$ gauged to some $\eta/s \neq 0$

HQ evolution

$$
p^{\mu} \partial_{\mu} f_Q(x, p) = C[f_q, f_g, f_Q](x, p)
$$
\n
$$
c[f_Q] = \frac{1}{2E_1} \int \frac{d^3 p_2}{2E_2(2\pi)^3} \int \frac{d^3 p'_1}{2E_1(2\pi)^3}
$$
\n
$$
\times [f_Q(r'_1) f_{q,g}(r'_2) - f_Q(p_1) f_{q,g}(p_2)]
$$
\n
$$
\times (2\pi)^4 \delta^4(p_1 + p_2 - p'_1 - p'_2),
$$

Non perturbative dynamics \rightarrow M scattering matrices (q,g \rightarrow Q) evaluated by Quasi-Particle Model fit to **lQCD thermodynamics**

$$
m_g^2(T) = \frac{2N_c}{N_c^2 - 1} g^2(T) T^2
$$

\n
$$
m_q^2(T) = \frac{1}{N_c} g^2(T) T^2
$$

\n
$$
g^2(T) = \frac{48\pi^2}{(11N_c - 2N_f) \ln \left[\lambda \left(\frac{T}{T_c} - \frac{T_s}{T_c} \right) \right]^2}
$$

Impact of off-shell dynamics: M.L. Sambataro et al., *Eur.Phys.J.C* 80 (2020) 12, 1140

R_{AA} & v_2 with upscaled pQCD cross section

It's not just a matter of pumping up pQCD elastic cross section: too low R_{AA} **or too low** v_2

Ratio to D⁰ in pp

- Ø Evidence of different "Fragmentation" Fractions in pp at LHC wrt e^+e^- & e^-p but similar to AA
- Ø Coalesc.+Fragm. very close to pp FF
- \triangleright Large Ξ_c , Ω_c only in coalescence, lack of yield in PYTHIA, SHM,…
- Ø SHM+RQM baryon resonances would have a similar agreement (T~160-170 MeV) \ldots except for Ξ_c , Ω_c [Andronic et al., *JHEP* 07 (2021)]

"Fragmentation" Fractions in pp Catania Coalescence

- Ø Evidence of different "Fragmentation" Fractions in pp at LHC wrt e^+e^- & e^-p but similar to AA
- \triangleright Coalesc.+Fragm. very close to pp FF
- \triangleright Large Ξ_c , Ω_c only in coalescence, lack of yield in PYTHIA, SHM-RQM,…

Seems only hadronization models treating pp as a small QGP fireball or allowing allowing local reconnection-recombination get close to data..

HF coalescence in EPOS4HQ __

- \triangleright Advantages of implementing coal. in EPOS4:
- Full dynamical realistic dynamics from ep, pp to AA
- **Able to predict also a sizeable elliptic flows** \rightarrow more solid costraints to hadronization and the properties of the pp QCD matter created
	- $\rightarrow v_2(\Lambda_c)/v_2(D^0)$ would give more insight into coal.
- \triangleright Would PYHTIA-CR predict finite v_2 of D, Λ_c in pp? String shoving?

Going deeper into A_c enhancement

- Catania-coal & SHM-RQM/QCM natural good description of Σ_c/D^0 and $A_c \leftarrow \Sigma_c$ - PYTHIA-CR too many $\Sigma_c \rightarrow \Lambda_c/D^0$

Going deeper into Λ_c enhancement

Altmann et al., arXiv 2405.19137

- Catania-coal & SHM-RQM/QCM natural good description of Σ_c/D^0 and $A_c \leftarrow \Sigma_c$

- PYTHIA-CR too many $\Sigma_c \rightarrow \Lambda_c/D^0$; associated to a suppression of junction **diquark l=1** (set $\sim e^+e^-$ for string di-quark). Removing it \rightarrow Agreement to data of $\Lambda_c \leftarrow \Sigma_c$ It goes in the direction of simply recombine according to $SU(3)$ \sim simple colaescence

HF Baryon enhancement: impact on R_{AA}

 Λ_c production was mostly neglected in the first studies of R_{AA} , but:

- Strong impact on R_{AA} low-intermediate $p_T \rightarrow$ affect estimates of D_s
- Stronger coalescence \rightarrow smaller Ds
- $-\Lambda_c/D \sim O(1)$ already in pp@TeV: pp $\sim AA \neq e^+e^-$, e-p

HF Hadronization in jet shower $-$ [S. Sadhu-this session]

Relevance of direct Bottom measurements

Just an first example, for the more plain observable R_{AA}

workshop on QCD challenges from pp to AA collisions, Sept. 2024

Peak depends on the degree of b coupling to QGP medium is smeared-out in non prompt measurements

Direct B, L_b measurement at low p_T \rightarrow need for Run5-6

Early results and predictions for Bottom in pp

- Again Need CR in PYTHIA \rightarrow seems too strong at forward (no rapidity dependence)
- EPOS4HQ**+coal** close to data (rapidity dependence?). At y=0 Catania results
- $SHM + RQM$ about close, less the p_T shape (Frag.-Function)
- Coal./Fragm. ratio in pp larger for B than D

Slide su importanza large rapidity coverage

Figura Lc/D a rapidita finita

Strong adavantage to see the evolution with rapidity in the same system - Disentangle size and parton density impact

Impact of diquark?

__ QCD challenges from pp to AA, EPJC 84(2024)

q Coal. Approaches (*Catania, LBT, EPOS4HQ… RR-TAMU*) 0.08 \rightarrow **v**₂(Λ _c) $>$ **v**₂(D ⁰) at p_T $>$ 2 GeV 0.06 $\int_{\mathcal{S}^N}$ 0.04 because Λ_c gets flow from 2 light quarks, D⁰ from 1+fragm. $v_2^{\lambda_c}$ 0.02 Q POWLANG assume diquark hydrodynamical flow and $\Lambda_c = (qq) + c \Rightarrow v_2(\Lambda_c) \sim v_2(D^0)$ at intermediate p_T -0.02

- **Q** Quark model gives (us)₀ large binding energy \rightarrow small mass. If V(r, T) potential at finite T with large $m_D \sim LQCD$ Assumption:
	- Again $(us)_0$ thermal yield flowing with the medium
	- More precise data needed to draw any conclusion \rightarrow may be Run 4
	- H. Yun, S.H. Lee et al., PLB 851(2024)

Memory effect? Non-Markovian dynamics Pooja et al., PRD108(2023)

Generalized Langevin equation

$$
\frac{dp(t)}{dt} = -\int_0^t dt' \gamma(t, t') p(t') + \eta(t)
$$

$$
\langle \eta(t_1)\eta(t_2) \rangle = \frac{\mathcal{D}}{\tau} \langle h(t_1)h(t_2) \rangle,
$$

$$
\langle h(t_1)h(t_2) \rangle \cong \kappa \left(\frac{t_1}{\tau}\right)^{\beta - 1} \left(\frac{t_2}{\tau}\right)^{\beta}
$$

There could be correlations in the initial glasma and toward the phase transition

 \triangleright Exponential memory function t ~ 1 fm/c \rightarrow not significant final effects. In many area of physics and chemistry there power law function

M. Ruggieri et al., PRD 106(2022)

Memoryless $\langle p_x \rangle = \langle p_{x0} \rangle e^{-t/\tau_{therm}}$ starting from FONNL checking that it leads to same $Y_{therm} = K/K_{eq}$ for different D For memory we look at the same Y_{therm} to estimate τ_{therm}

For bottom even a very strong memory function leaves the estimate of D_s nearly unaffected $\tau \ll \tau_{therm} \sim 5 - 10 fm/c$

Expected a smaller D_s to reproduce similar $\mathsf{R}_{\mathsf{A} \mathsf{A}_\mathsf{GS}}$

Extension to higher order anisotropic flows $v_n(p_T)$

ESE tecnique and v_n **correlations**

Selection of events with the same centrality but different initial geometry on the basis of the magnitude of the second-order harmonic reduced flow vector q_2 .

Predictions for D mesons

ESE: v_2 and spectra (20% small/large q_2)

Data taken from ALICE collaboration: *Phys.Lett.B* 813 (2021) 136054

 \triangleright υ ₂ (large- q_2 /small- q_2) $\ge \upsilon$ ₂ (unbiased) of about 50% in both 0-10% and 30-50% centrality

 \triangleright The standard approach for R_{AA} and v_2 works for ESE observables

Y. Sun et al. in preparation

Going deeply into Hot QCD matter

Possible because at LHC one starts to create about than 10,000 particle per event

A first study of HQ in a Glasma What happens for $0+<$ t $<$ 0.3-0.5 fm/c?

$$
\langle \rho_A^a (x_T) \rho_A^b (y_T) \rangle = (g^2 \mu_A)^2 \delta^{ab} \delta^{(2)} (x_T-y_T),
$$

Inizialization by Mc-Lerran/Venugopalan model PRD49(1994)

$$
\frac{dA_i^a(x)}{dt} = E_i^a(x),\tag{16}
$$

 $\frac{dE_i^a(x)}{dt} = \sum_j \partial_j F_{ji}^a(x) - \sum_{b,c,j} f^{abc} A_j^b(x) F_{ji}^c(x)$. (17)

Formation time of transverse E-B fields $g^2 \mu \tau \approx 1 \approx \tau_{form}$ (charm) after $\tau \cong Q_s^{-1}$, all components are equal

The very early stage has left some imprints?

J. Liu, S. Plumari, K. Das, M. Ruggieri, VG, Phys. Rev. C 102 (2020) 4, 044902

Role of HQ also in the CGC/Glasma studies

- **↓** HQ dynamics starting from $\tau_0 \approx 1/2 m_{\Omega} \approx 0.02$ -0.08 fm/c
- ❖ Relevance to HQ in pA collisions

 \rightarrow Explain R_{pA} ~ 1 and large v₂ of D meson \rightarrow may have a key role on D- \overline{D} angular correlation

❖ May affect the determination of $D_s(T)$

 \rightarrow modify (improve) the relation R_{AA} & v₂ toward a smaller D_s

A substantial goal for HL-LHC ...

The issue is not that the unknown early stage would destroy our current picture, but to find signatures from the early stage dynamics $\left(\sim\right.$ for Early

Impact of T dependent interaction on $R_{AA} - v_2$

S. Das et al., PLB747 (2015) 260

Chiral Magnetic Effect and P &CP violation

Reveals a **local Parity breaking in Strong Interactions**

Consider a homogeneous, strong magnetic field (Warringa, 2008):

 $\begin{picture}(130,10) \put(0,0){\line(1,0){150}} \put(15,0){\line(1,0){150}} \put(15,0){\line(1,0){150}} \put(15,0){\line(1,0){150}} \put(15,0){\line(1,0){150}} \put(15,0){\line(1,0){150}} \put(15,0){\line(1,0){150}} \put(15,0){\line(1,0){150}} \put(15,0){\line(1,0){150}} \put(15,0){\line(1,0){150}} \put(15,0){\line(1,0){150}}$ Momentum π^* Spin π^- P-odd current absent in Maxwell eq.s $(N_L - N_R)_{+\infty} - (N_L - N_R)_{-\infty} = 2Q_W$ driven by axion field

A local axial $\mu_5 = \mu_R$ μ_L (topological μ_θ) induces an electric current J_v along $B \rightarrow c$ charge separation No C-odd but CP-odd

> Expected exp. effect: dipole modulation of azimutal distribution

$$
\frac{dN_{\pm}}{d\phi} \sim 1 + 2\nu_1 \cos(\Delta\phi) + 2\nu_2 \cos(2\Delta\phi) + \dots + 2a_{\pm} \sin(\Delta\phi)
$$

Relaxation time of topological charge $m_q^{-1} >> \tau_{\text{fireball}}$

Observed in Dirac semi-metals – Q. Li et al., *Nature Physics* 12 (2016)

v_1 large sensitivity in the low p_T

Observables sensitive to spatial inhomogeneity of HQ distribution, like the transverse flow $v₁$, can provide a richer information on HF transport coefficients

Z^0 mass and width modification in AA

E.m. field: a main source of uncertainty

Case A

E-B fields like Gursoy et al., PRC89(2014) Medium at t<0 + eq. medium σ_{el} =0.023 fm⁻¹

Case B and C

B an C similar B_v up to t< 1 fm/c

* e.m. field σ_{el} as for RHIC

 $\rightarrow \Delta v_1(D^0)$ order magnitudes smaller than ALICE data + opposite sign

* e.m. with $B_v(t=0)$ as in vacuum \rightarrow Large $\Delta v_1(D^0)$ but **opposite** direction

* e.m. with $B_v(t=0)$ as in vacuum, $E_x \approx 0.5$ B_v (t=0.5-1 fm/c) $\rightarrow \Delta v_1(D^0) \approx$ ALICE Data (1/t ideal MHD)

Time derivative of B_y(t) even more relevant than absolute values"⁷⁶

If Δ **v**₁=**v**₁(D ⁰) • **v**₁(D ⁰) is of electromagnetic origin \rightarrow we'd have a proof of the formation of the QGP Is there some complementary way of proving it?

> Is there a further way to pin down the e.m field strength? Such a large splitting (in ALICE) has an electromagnetic origin?

Probing the electromagnetic fields in ultra-relativistic collisions with leptons from *Z***⁰ decay and charmed mesons**

 $\tau_{Z^0} = 1/2m_{Z^0} = 0.0011$ fm/c

What one expects?

- No damping from medium interaction
- Massless more easily to drag
- Charge 1.5 times larger

One expects same sign and $\Delta v_1(l^+, l^-) > \Delta v_1(D^0, \underline{D}^0)$?!

- Leptons from Z^0 decay are separable by other sources
- $\tau_{decay}(Z^0)$ = $\tau_{form}(charm)$ = 0.08 fm/c: they go through the e.m. fields at the same time \rightarrow meanfigul look at the correlation $\Delta v_1(D^0, D^0)$ and $\Delta v_1(I^+, I^-)$

V_1 splitting for D^0 - \underline{D}^0 and I ⁺- I ⁻ from Z^0 decay and

- No medium strong interaction

 $\tau_{\text{decay}}(Z^0) = \tau_{\text{form}}(\text{charm}) = 0.08 \text{ fm/c}$

- Massless more easily to drag

- Charge 1.5 times larger

Surprises:

1) $\Delta v_1(l^+, l^-) < \Delta v_1(D^0, \underline{D}^0)$ even if $\Delta p_X(l) \approx 2^* \Delta p_X(D)$

2) even the sign of Δv_1 ($|$ ⁺, $|$ ⁻) can be opposite!? not because wins electric field

 Δp_x is always positive: ≈ 0.3 GeV for D charm \approx 0.7 GeV for leptons with a weak p_T dependence

Bottom R_{AA}: Boltzmann = Langevin

In bottom case Langevin approximation ≈ Boltzmann But Larger M_b/T (\approx 10) the better Langevin approximation works

Strangeness in pp for HF sector

- Catania Coalesc.+Frag. quite ok, but it is large the fragmentation contribution
- POWLANG/LCN too high, but the approach has only recombination also for mesons
- PYTHIA-CR seems to have a lack of strangeness [see also E_c]

Coalescence in pp@5 ATeV

V. Minissale, Plumari, VG, PLB 821 (2021)

Large uncertainty in the exisiting Ω_c resonances

Seems to work from pp to PbPb \rightarrow multi-charm production from pp to PbPb Error band correspond to $\langle r^2 \rangle$ uncertainty in quark model

 \triangleright D, Λ_c yields constrained by charm # conseervation because they dominate the yield \triangleright Instead Ω_{ccc} is also very sensitive to wave function - $\langle r^2 \rangle$

How HQ interact with the medium $[$ low-medium $p_T]$

v **3 kinds of approaches:**

a) **pQCD inspired + HTL**

 [*Nantes(+rad.) …Torino, LBL-Duke*] LO diagrams, propagator with reduced IR regulator $q^2 - \kappa m_d^2(T) \Big)^{-1}$ match **soft scale** resummed in **HTL**

 b) **Quasi Particle Model + tree level diagrams [***Catania, Frankfurt-PHSD, QLBT o CoLBT,…***] g(T) from a fit to lQCD-EoS screened propagators with** $m_D \sim gT$

c) **T-matrix:** scattering under V(r,T) deduced from lQCD (*TAMU*)

HQ momentum diffusion: lattice-QCD

From the non-relativistic limit of the Langevin equation one gets

$$
\frac{dp^{i}}{dt} = -\eta_{D}p^{i} + \xi^{i}(t), \quad \text{with} \quad \langle \xi^{i}(t)\xi^{j}(t') \rangle = \delta^{ij}\delta(t - t')\kappa
$$
\n
$$
\text{hence} \quad \kappa = \frac{1}{3} \int_{-\infty}^{+\infty} dt \langle \xi^{i}(t)\xi^{i}(0) \rangle_{\text{HQ}} = \frac{1}{3} \int_{-\infty}^{+\infty} dt \underbrace{\langle F^{i}(t)F^{i}(0) \rangle_{\text{HQ}}}_{\equiv D^{>} (t)}
$$

Lattice-QCD simulations provide Euclidean ($t = -i\tau$) electric-field ($M = \infty$) correlator

$$
D_{E}(\tau)=-\frac{\langle\mathrm{Re}\,\mathrm{Tr}[U(\beta,\tau)gE^{i}(\tau,\mathbf{0})U(\tau,0)gE^{i}(0,\mathbf{0})]\rangle}{\langle\mathrm{Re}\,\mathrm{Tr}[U(\beta,0)]\rangle}
$$

How to proceed? κ comes from the $\omega \to 0$ limit of the FT of $D^>$. In a thermal ensemble $\sigma(\omega) \equiv D^{>}(\omega) - D^{<}(\omega) = (1 - e^{-\beta \omega})D^{>}(\omega)$, so that

$$
\kappa \equiv \lim_{\omega \to 0} \frac{D^>(\omega)}{3} = \lim_{\omega \to 0} \frac{1}{3} \frac{\sigma(\omega)}{1 - e^{-\beta \omega}} \underset{\omega \to 0}{\sim} \frac{1}{3} \frac{T}{\omega} \sigma(\omega)
$$

From $D_{\mathsf{E}}(\tau)$ one extracts the spectral density according to

$$
D_E(\tau) = \int_0^{+\infty} \frac{d\omega}{2\pi} \frac{\cosh(\tau - \beta/2)}{\sinh(\beta\omega/2)} \sigma(\omega)
$$

8 D > 8 O > 8 D > 8 D >

Two Main Observables in HIC

◆ Nuclear Modification factor **A**

$$
R_{AA}(p_T) = \frac{d^2 N^{AA} / dp_T d\eta}{N_{coll} d^2 N^{NN} / dp_T d\eta}
$$

- Modification respect to pp
- Decrease with increasing partonic interaction

\triangle Anisotropy p-space: Elliptic Flow v_2

v_1 of D mesons: quantitative study

$$
W(x_{\perp}, \eta_s) = 2\left(N_A(x_{\perp})f_{-}(\eta_s) + N_B(x_{\perp})f_{+}(\eta_s)\right)
$$

$$
f_+(\eta_s)=f_-(-\eta_s)=\left\{\begin{array}{ll} 0 & \eta_s<-\eta_m\\ \dfrac{\eta_s+\eta_m}{2\eta_m} & -\eta_m\leq\eta_s\leq\eta_m\\ 1 & \eta_s>\eta_m \end{array}\right.
$$