Collective effects in particle production from small to large colliding systems: status and future prospects

F. Bellini (Università e INFN, Bologna) Workshop on High Luminosity LHC and Hadron Colliders LNF, 3rd October 2024

Collective effects in particle production

What are the macroscopic properties of the QGP? Temperature? Viscosity?

Collectivity of QCD across system sizes?

Can we have QGP in small systems?

Collectivity – a definition

Common behavior exhibited by a **group of entities** associated with a phenomenon of an **underlying complex many-body system** for which the basic interactions may be well understood.

E.g. "Loose" definition:

- **correlations** of many particles
- across a **long range in rapidity**
- due to a **common source**

Long-range correlations in particle emission

Collective expansion translates into **long η-range modulation** of particle emission **in azimuth. Observed in Pb-Pb** collisions → **collectivity expected**

Broad "ridge" in a wide Δη range: **long-range correlations** emerging from early times

Modulation in azimuth

determined by the medium **response** to the initial transverse geometry

→ **anisotropic flow**

 \rightarrow decomposition in Fourier series of the azimuthal distribution at large η

> **No ridge nor modulation in pp min bias**

Francesca Bellini (Bologna) - LNF, 03.X.2024 5

What about other (smaller) systems?

 \sim

Coulomb fields of moving charges equivalent to a flux of photons boosted to high energies: γ up to of ~10s GeV with a ~few TeV Pb beam

A. Badea et al. PRL 123 (2019) 212002

CMS, Phys. Lett. B 844 (2023) 137905

ATLAS, PRC 104, (2021) 014903

Small and large systems – a definition

We form a QGP by compressing a large amount of energy in a small volume in heavy-ion collisions.

→ we can **control/vary the energy deposited** in the collision region by **varying the collision system**

- impact parameter / **centrality**
- nuclear **species** (p-Pb, pp, XeXe, OO, pO...)
- classify events based on final-state charged particle **multiplicity**

 \rightarrow Low N_{ch} or dN_{ch}/dn

Collectivity: a cornerstone of HI collisions

A collective motion of particles superimposed to the thermal motion \rightarrow a **medium**

Radial flow: radial **expansion** of a medium in the vacuum under a common velocity ($\beta = v/c$)

- Affects transverse momentum distribution of hadrons and their ratios (mass dependence)
- Increasing from peripheral to central collisions

Collectivity: a cornerstone of HI collisions

Initial geometrical anisotropy ("almond" shape) in non-central HI collisions → eccentricity → **pressure gradients** develop

Scatterings convert anisotropy in coordinate space into an observable momentum anisotropy → **anisotropic flow**

 \rightarrow anisotropy in azimuthal angle described by a Fourier series $\rightarrow v_n$ describe how initial fluctuations propagate in a **viscous fluid**

Anisotropic flow

Fluctuations of the initial state energydensity lead to different shapes of the overlap region

→ **non-zero higher-order flow** coefficients

Fig. 2. (color online) Characteristic shapes of the deformed initial state density profile, corresponding to anisotropies of \mathcal{E}_1 , \mathcal{E}_2 , \mathcal{E}_3 , \mathcal{E}_4 and \mathcal{E}_5 (from left to right).

True collectivity correlates many particles

Elliptic flow by correlating multiplets of particles: $v_2(4) \approx v_2(6) \approx v_2(8) > 0$

- subtract non-flow phenomena as jets and other physical 2-particle correlations
- measure with **rapidity gap** (long η -range!)
	- \rightarrow *nota bene:* importance of broad η coverage!

OPEN QUESTION: *what is the origin of the observed collectivity in small systems?*

Final state? Anisotropies, correlations via **multiple scatterings** \rightarrow hydrodynamic flow [established in Pb-Pb collisions]

Initial state? From **momentum correlations** at partonic level [gluon saturation, Color Glass Condensate, ...] E.g. Venugopalan, PRD 87, 094034 (2013) + ...

Characterization of fluid behaviour

Long wavelenghts [⇔] *long range correlations* strong evidence of **fluid-like response**

Theory: Relativistic viscous fluid dynamics accounts for collective dynamics in terms of QGP properties (EOS, transport coefficients) that are calculable from first principles in QFT.

Figs. from Rezzolla and Zanotti, 2013

Characterization of fluid behaviour

Long wavelenghts [⇔] *long range correlations* strong evidence of **fluid-like response**

Theory: Relativistic viscous fluid dynamics accounts for collective dynamics in terms of QGP properties (EOS, transport coefficients) that are calculable from first principles in QFT.

What is the viscosity of QGP?

J. E. Bernhard et al, Nature Physics 15 (2019) 1113

Spectra and flow coefficients are well described by viscous hydrodynamics with a very low shear viscosity $(\eta/\mathbf{s} \sim 0.08 - 0.16)$, minimally dissipative effects

QGP close to a perfect fluid

Flow of identified hadrons in large systems

Light flavour hadrons exibit ''textbook'' flow

- Mass dependence at low p_T
- Interplay of production mechanisms at mid- p_T (baryon/meson splitting \rightarrow recombination)

Charm $v_2 > 0$

- **charm partially thermalised** with the QGP
- recombination with LF at hadronisation **No significant evidence of flow of beauty**

Identified particle flow v_2 in small systems

*v***2>0 for LF and HF hadrons**, with features reminding of Pb-Pb collisions

- mass scaling at low p_T
- consistency with hydrodynamics *(though worse than in Pb-Pb* [→] *Devil's in the details: bulk viscosity, initial stage…)*

ALICE, PRL122, 072301 (2019)

Runs 3+4 - More charm and beauty

Higher precision for rarer probes

- Low- p_T production
- $v₂$ of several HF hadron species
- b at fwd-y down to zero p_{T} (mainly ALICE)
- B hadrons and b-jets (mainly ATLAS, CMS)

 \rightarrow Study mass dependence of **energy loss**, in-medium **thermalization** of heavy-flavours

 \rightarrow Access to the **medium transport properties,** e.g. charm diffusion coefficient, linked to charm equilibration time

$$
\tau_Q = \frac{m_Q}{T} D_s
$$

Runs 3+4 - More charm and beauty

Higher precision for rarer probes

- Low- p_T production
- $v₂$ of several HF hadron species
- b at fwd-y down to zero p_{T} (mainly ALICE)
- B hadrons and b-jets (mainly ATLAS, CMS)

→ Study mass dependence of **energy loss**, in-medium **thermalization** of heavy-flavours

 \rightarrow Access to the **medium transport properties,** e.g. charm diffusion coefficient, linked to charm equilibration time

$$
\tau_Q = \frac{m_Q}{T} D_s
$$

Runs 3+4 - More flow

- v_2 of HF in small systems
- flow from multi-particle cumulants

High-lumi

Light flavour hadrons from QGP hadronisation

Success of the statistical hadronization model (chemical equilibrium) in describing yields of light flavour hadron species over 10 orders of magnitude in central Pb-Pb collisions

(including strangeness, light nuclei and hypernuclei)

→ **bulk produced from the hadronization of a QGP in thermodynamical equilibrium**

 $T_{\text{chemical}} \sim 155 \text{ MeV}$

Nota bene: Close to the limiting temperature for hadrons to exist: T_{pc} = (156.5 \pm 1.5) MeV predicted by lattice QCD

Andronic et al., Nature 561, 321 (2018) Data from ALICE, see also ALICE, EPJC 84 (2024) 813

Strangeness production in pp, p-Pb

Increase of (multi)strange to non-strange yield ratios with multiplicity in pp and p-Pb collisions until saturation in Pb-Pb

• strangeness enhancement relative to pp suggested in the 1980's as QGP signature (production by thermalised gluon fusion in QGP)

EPJC 80, (2020) 167 and 693

Strangeness production in pp, p-Pb

Increase of (multi)strange to non-strange yield ratios with multiplicity in pp and p-Pb collisions until saturation in Pb-Pb

• strangeness enhancement relative to pp suggested in the 1980's as QGP signature (production by thermalised gluon fusion in QGP)

→ **Smooth evolution of hadrochemistry** across collision systems, chiefly **driven by multiplicity**

Similarities (collective behaviour) across systems **→ common hadron production mechanism?**

Advocates for a unification of the theoretical description under a "small-to-large" or "large-to-small" paradigm.

A point of no return (?)

Runs 3+4 - A "small systems" programme

- systematic study of "QGP signals" in pp, p-Pb and Pb-Pb, p-O and O-O
- **Very high multiplicity pp overlap with up to 65% central Pb-Pb collisions!**
- study collectivity, strangeness/chemistry, hadronisation
- → search for the **onset of QGP-like features**

Beware of selection biases!!! \rightarrow ALICE 3 (wider acceptance) > Run4

High-lumi

Production of loosely-bound light (anti)nuclei

Smooth evolution as a function of the system size from pp to Pb-Pb

 \rightarrow puzzle of the **survival of loosely bound states** (E_B \sim 2 MeV) in HIC hadron gas (T \sim 150-100 MeV)

→ **nucleosynthesis in hadronic collisions**: statistical hadronization vs coalescence

Runs 3+4: (anti)(hyper)nuclei

- More A=3 and A=4 states from **small to large** systems + discovery of A=4,5 anti-hypernuclei
- Clarify **formation mechanisms** of nuclear bound states from a dense partonic state
- Determine *T***ch** even more precisely

High-Iumi

Instead of a full summary, the open questions...

We have entered the **precision era** for the **quantitative** characterization of QGP properties and the study of **QGP phenomena emerging from QCD at high densities.**

The study of **collectivity from large to small systems is a central topic in Runs 3+4** and HL phase \rightarrow will have a strong impact on the future programme beyond Run4!!!

What is the origin of the observed emerging collectivity from small to large systems?

What are the limits of QGP formation?

How do collective phenomena and macroscopic properties of matter arise from the fundamental interaction of QCD?

Thank you!

Contact: francesca.bellini@bo.infn.it

Space-time extension of the heavy-ion source

2- and 3-particle correlations allows to ''measure'' the particle-emitting source size **at freeze-out**

- Requires theoretical modelling of the h-h interaction (not available for all particle species!)
- Needs to account for collective effects \rightarrow k_T and m_T dependence
- From 1D to $3D \rightarrow$ requires large statistics

Space-time extension of the heavy-ion source

2- and 3-particle correlations allows to ''measure'' the particle-emitting source size **at freeze-out**

- Requires theoretical modelling of the h-h interaction (not available for all particle species!)
- Needs to account for collective effects \rightarrow k_T and m_T dependence
- From 1D to $3D \rightarrow$ requires large statistics

Francesca Bellini (Bologna) - LNF, 03.X.2024 29

Accessing the strong potential among hadrons

Two-particle femtoscopic correlations provide information about

 \rightarrow final-state interactions among hadrons

 \rightarrow direct comparison to ab initio **QCD calculations**

- **→ source** size and lifetime
- ⟶ **bound states** (e.g. light nuclei, hypernuclei)

A new and comprehensive programme of measurements in pp, p-A, AA at the LHC to **study of the residual strong interaction among (strange) hadrons and Y-N interaction**

+ Beyond HIC: neutron stars and hadron physics

ALICE, Nature 588 (2020) 232–238

Femtoscopy technique

p-d as a three-body system

The p-d correlations is reproduced by treating the deuteron as a composite particle \rightarrow access to the genuine three-body interaction!

ALICE, PRX 14 (2024) 031051, Theory: M. Viviani, at al., arXiv[:2306.02478](https://arxiv.org/abs/2306.02478)

More (anti)(hyper)nuclei with high-lumi

ALI-SIMUL-312336

Hadrons from a thermal medium

Production of (most) light-flavour hadrons in Pb-Pb at 2.76 TeV is described $(x^2/ndf \sim 2)$ by thermal models with a single chemical freeze-out temperature

 T_{ch} ≈ 156 MeV at 2.76 TeV

Deviation for short-lived **K*⁰** Tensions between **protons** and **multi-strange baryons**

Baryon-to-meson

