Heavy flavour physics and detector upgrades

Workshop on High Luminosity LHC and Hadron Colliders

Frascati - October the 3rd 2024

Heavy flavour physics and detector upgrades

Outline:

Introduction

Heavy flavour as a key probe of the QGP
 results from LHC run2(+3) in HI
 Detector upgrades in LS3 and LS4
 Conclusions and remarks

Space time evolution of A-A collision

Hard probes of A-A collision

Hard probes in nucleusnucleus collisions:

- produced at the very early stage of the collisions in partonic processes with large Q²
- pQCD can be used to calculate initial cross sections
- traverse the hot and dense medium
 - can be used to probe the properties of the medium

Hard probes of A-A collision

Hard probes in nucleusnucleus collisions:

- produced at the very early stage of the collisions in partonic processes with large Q²
- pQCD can be used to calculate initial cross sections
- traverse the hot and dense medium
- can be used to probe the properties of the medium

Nuclear modification of unidentified charged particles

The easiest way to study the "jet quenching"

a few days of data taking \rightarrow **Run1 result**

Nuclear modification of unidentified charged particles

The easiest way to study the "jet quenching"

a few days of data taking \rightarrow Run1 result

R_{AA} for heavy flavour

3/10/24

p_T range drives the physics

p_T range drives the physics

Azimuthal anisitropy

mesons

2

m, - m (GeV)

2

p_T (GeV/c)

40

0.1

0

0.5

0 4

1.5

1

(m_T - m)/n_n (GeV)

Azimuthal anisitropy

Azimuthal anisitropy

Prompt D meson R_{AA} and v_2

25/11/21

Charm spatial diffusion coefficient

key transport parameter (quantifies drag, thermal, recoil forces)

From that one derives the drag and momentum diffusion coefficients:

$$\eta_{\rm D}(\vec{p},T) = \frac{1}{2\pi T D_s} \cdot \frac{2\pi T^2}{E}$$
$$\kappa(T) = \frac{1}{2\pi T D_s} \cdot 4\pi T^3.$$

Further discussed in the talk of V. Greco

Angular correlations

- Characterise energy-loss of heavy quarks in QGP medium, with sensitivity to specific ΔE mechanisms
 - D-Dbar correlations sensitive to parton-level initial angular correlation
- sensitive to parton-level initial angular correlation
 - A very tough measurement

- huge combinatorial background in Pb-Pb
- out of reach with fully reconstructed hadron decay in LHC run3&4

Angular correlations

Baryons (the HF baryons)

Already in pp unexpected results

fragmentation functions are not universal among different collision systems

HF baryon/meson ratio enhanced in p+p compared to e+e-, ep

Baryons in pPb and PbPb

Further discussed later in this session

Quarkonia

□ Two «discoveries» at the LHC

Sequential dissociation of the Y(nS) states

centrality and at low p_T

Quarkonia

Two «discoveries» at the LHC Bulk of charmonia produced via ccbar recombination from the QGP

3/10/24

Detecor upgrades

Detecor upgrades: HF view

Overview in the talk of F. Jonas. I will focus on the upgrades with big impact on Heavy Flavour (for high density QCD physics)

CMS in LS3: MTD

LHCb

Important upgrade in LS2 (Upgrade I) \rightarrow results being delivered in Run3

LHCb

LHCb to become full player for HI physics in forward rapidity region!
 Also rich program with (polarized) fixed target

3/10/24

ALICE in Run3

ALICE in Run3

ALICE next upgrades

This project has received funding

- Improvement of pointing resolution by:
 - drastic reduction of material **budget** $(0.3 \rightarrow 0.05\%)$ X0/layer)
 - being **closer** to the interaction point (24 \rightarrow 18 mm)
 - thinner and smaller **beam pipe** $(700 \rightarrow 500 \ \mu\text{m}; 18 \rightarrow 16 \ \text{mm})$
- Directly boosts the ALICE core physics program that is largely
 - low momenta
 - secondary vertex reconstruction

2035-2038

Run 5

E.g. Λ_c S/B improves by factor 10, significance by factor 4

LS4

ALICE 3

Run 6

3/10/24

A parenthesis: HF at the SPS

3/10/24

A parenthesis: HF at the SPS

MOSAIX sensor of ALICE ITS3

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 824093.

ALICE 3: Run 5 and beyond

ALICE 3: vertex detector

"Iris" vertex detector

- In vacuum, *retractable*, tracker (**3 layers + 3 disks**): in closed position first layer at **5 mm** from the beam
- Wafer-size sensors based on CMOS MAPS technology (synergy with ITS3 R&D)
- Pixel pitch of about 10 μm (2.5 μm intrinsic resolution) and ~0.1%
 X0/layer
- Max. radiation load per operational year ~ 1.5 10¹⁵ 1 MeV neq/cm²
- Cooling on the outer surface of the 3rd layer (micro-channel) while the layer 0 and 1 cooled via conduction on the petals

R&D challenges: rad. hardeness, mechanics, cooling & services

ALICE 3: vertex detector

"Iris" vertex detector

- In vacuum, *retractable*, tracker (3 layers + 3 disks): in closed position first layer at 5 mm from the beam
- Wafer-size sensors based on CMOS MAPS technology (synergy with ITS3 R&D)
- Pixel pitch of about 10 μm (2.5 μm intrinsic resolution) and ~0.1%
 X0/layer
- Max. radiation load per operational year ~ 1.5 10¹⁵ 1 MeV neq/cm²
- Cooling on the outer surface of the 3rd layer (micro-channel) while the layer 0 and 1 cooled via conduction on the petals

R&D challenges: rad. hardeness, mechanics, cooling & services

This project has received funding from the European Union's Horizon 2020 rese; ALI-SIMUL-491785

42

ALICE 3: PID systems

Time-of-flight

- Barrel TOF: two layers at 19 cm and at 85 cm. Time resolution 20 ps, |η|<1.75. Total surface ~ 31.5 m²
- Two forward disks: $1.75 < |\eta| < 4$ with $r_{in} = 15$ cm, $r_{out} = 50$ cm at $z = \pm 405$ cm Tot. surface ~ 14 m²

R&D challenges: depends on technology, If MAPS uniform and fast charge collection + fast readout electronics and high S/N ratio

RICH for higher p_{T} reach

- 2 cm thick aerogel tile and photodetection layer (SiPMs) at 20 cm from the radiator
- Aerogel radiator refraction index n = 1.03 (barrel) and n= 1.006 (forward)
 → determine the p_T reach

R&D challenges: quality of the aerogel over production cycle, digital SiPMs radiation resistant

This project has received funding from the European Union's Horizon 2020 research and innovation

Strangeness tracking Multi-charm baryons Ξ_{cc}^{++} reconstructed in the channel: $\Xi_{cc}^{++} \rightarrow \Xi_{c}^{+}\pi^{+} \rightarrow \Xi^{-}\pi^{+}\pi^{+}\pi^{+}$ Ω_{cc} + reconstructed in the channel: $\Omega_{cc}^{+} \rightarrow \Omega_{c}^{0} \pi^{+} \rightarrow \Omega^{-} \pi^{+} \pi^{+}$ Performance for Ω_{ccc} studies ongoing 0 2 6 x (cm) Significance counts/(5 MeV/c²) counts/(5 MeV/c² 1600 900E Ξ_{cc}^{++} Ω_{cc}^{+} 10 800 ALICE 3 Study ALICE 3 Study 1400 Pb-Pb 0-10% PYTHIA Pb-Pb 0-10% PYTHIA 700 -cc 4.0 < p_ (GeV/c) < 15.0 $4.0 < p_{-}$ (GeV/c) < 15.0 1200 600E 2.0 Tesla mag. field 2.0 Tesla mag. field 35 nb⁻¹ Pb-Pb datataking 35 nb⁻¹ Pb-Pb datataking 1000 500E Ξ^{**}. BDT-optimised Particle + antiparticle Particle + antiparticle 400È - Ξ⁺⁺_{cc} standard 800 300E ALICE 3 Study 600 200 Pb-Pb 0-10% PYTHIA 100 ¹44₂4₂₂₄₄2₁₄₄¹44₄₄44⁷⁴⁴44⁴444444444444¹4⁴44⁴4⁴⁴4⁴⁴4⁴⁴4⁴⁴4⁴⁴4⁴⁴4⁴⁴4⁴⁴4⁴⁴4⁴⁴4⁴⁴ 10-1 Full acceptance over Inl<4.0 Particle + antiparticle 3.5 3.6 3.7 3.6 3.7 3.8 3.4 3.8 3.9 4 4.1 L_m = 35 nb⁻¹ Ω_{cc}^+ mass (GeV/ c^2) Ξ_{cc}^{++} mass (GeV/ c^2) 12 14 p₁ (GeV/c) ALICE 3 LOI arXiv:2211.02491 -STMIL-510900

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 824093.

$D^0 - \overline{D^0}$ azimuthal correlation

- measure angular (de)correlation
 - direct probe of HF interaction with the QGP
- Strongest signal at low p_T

In heavy-ion collisions doable only

- Very challenging measurement:
 - good purity, efficiency and η coverage

ALICE 3 LOI arXiv:2211.02491

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 824093.

with ALICE 3

Not just p and Pb at the LHC!

- Lighter systems like Ar-Ar, Kr-Kr or Xe-Xe
 - smaller size and shorter lifetime of the QGP
 - can offer nice opportunities, e.g.:
 - Study the approach of HF quarks to thermal equibration with lighter partons in the QGP
 - Emergence of decoherence in DDbar angular correlation
 - test-bench for hadronization mechanisms
 - Multi-charmed baryons, B_c, strange HF hadrons
- Very light system like O-O
 - Bridge between pp (and p-Pb) and heavy ions
 - onset of energy-loss effects in small colliding systems, which has not been observed yet
- Better experimental conditions

→ Discussed since long, see e.g. arXiv:1812.06772

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 824093.

Not just p and Pb at the LHC!

	Estimate in signal gain with basic scaling assumptios						
		0–0	Ar–Ar	Ca–Ca	Kr–Kr	Xe–Xe	Pb–Pb
Light part. D & tot c Ξ _{cc}	A	16	40	40	78	129	208
	$L_{\rm int}({\rm nb}^{-1}/{\rm month})$	1600	340	310	84	26	5.6
	$\sigma_{ m inel}$	1.41	2.6	2.6	4.06	5.67	7.8
	G events/month	2250	880	810	340	150	44
	S_{AA}/S_{PbPb} for $A^{5/3}$ scaling	4.0	3.9	3.5	2.9	2.1	1
	$S_{\rm AA}/S_{\rm PbPb}$ for A ² scaling	1.7	2.2	2.0	2.1	1.8	1
	S_{AA}/S_{PbPb} for $A^{7/3}$ scaling	0.7	1.3	1.2	1.5	1.5	1
$\Omega_{\rm CCX}$	S_{AA}/S_{PbPb} for $A^{8/3}$ scaling	0.3	0.7	0.7	1.1	1.3	1

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 824093.

Conclusions and remarks

- Heavy Flavour plays a key role in the Heavy Ion programme of the HL LHC (and SPS)
 - Access to the microscopic dynamics of the collisions and the QGP since its earliest phase
 - Strong theoretical grounds
- Experimental requirements:
 - Large statistics "on tape":
 - \Box Trigger-less selection (\rightarrow continuous readout)
 - □ Luminosity hungry: Run3+4 x2-3; Run5+6 x2-3
 - Cutting-edge micro-vertex detector
 - Excellent PId for hadrons (and leptons)
- Quantum jump in the precision with ALICE 3
 - A few runs with lighter ions relevant

What can we learn from HI collisions ?

Credits: W. Busza et al. Annu. Rev. Nucl. Part. Sci. 2018.68:339-376

QCD in Cosmology

- heavy ion collisions recreate droplets of the state of matter of our Universe 1µs after the Big Bang
 - state at this time and its evolution to hadronic phase (cross-over vs. 1st order phase transition) had severe influence on the entire history of our Universe

What can we learn from HI collisions ?

Emergence of Complex Quantum Matter

 $\chi = \frac{1}{4g^2} G_{\mu\nu} G_{\mu\nu} + \sum_{j} \overline{g}_j (i \partial^{\mu} D_{\mu} + m_j) q_j$ l where $G_{\mu\nu}^{\alpha} \equiv \partial_{\mu} P_{\nu}^{\alpha} - \partial_{\nu} P_{\mu}^{\alpha} + i f_{be}^{\alpha} P_{\mu}^{b} P_{\nu}^{c}$ and Du= du + it An That's it! final detected vivistic Heavy-Ion Collisions Re particle distributio Kinetic freeze-ou Hadronization adron gas phase QGP phase AP IN DAA pre-equilibrium viscous hydrodynamics dynamics free streaming collision evolution $\tau \sim 0 \, \text{fm/c} \quad \tau \sim 1 \, \text{fm/c}$ τ~10 fm/c $\tau \sim 10^{15} \, \text{fm/c}$

3/10/24

not just HI...

study of "reference" colliding systems like pp and d-Au is a fundamental part of any HI programme

At the LHC, not just "reference": extreme pp and p-Pb events have revealed unexpected features

p_T range drives the physics

v₂ of Heavy Flavor in PbPb

- Nonprompt D⁰ < prompt D⁰
- Nonprompt J/Ψ < prompt J/Ψ
- $\Upsilon(1S) \approx 0$
- Consistent picture of charm flow
- Less clear for beauty quarks

Charm spatial diffusion coefficient

key transport parameter (quantifies drag, thermal, recoil forces)

ALICE data (including v₃), *JHEP01* (2022) 174: 1.5<2πT_cD_s<4.5

25/11/21

ITS3 layer

Cylindrical Structural Shell

Half Barrels

Thermal radiation and chiral symmetry restoration

Thermal radiation and chiral symmetry restoration

- access to time evolution of the QGP temperature
- □ Spectral function of low mass dielectrons determined with 6-8% unc. in the region 0.4≤ m_{ee} ≤1.3 GeV/c²
- Chiral mixing would produce a 20-25% change versus vacuum spectral functions (0.8≤ m_{ee} ≤1.2 GeV/c2)

ALICE Coll. arXiv:2211.02491

Multi-charm baryons: why?

different models to describe charm equilibration and hadronisation:

- H. He et al. PLB 746 (2015) 59
- A. Andronic et al. JHEP 07 (2021) 035
- J. Zhao et al. PLB 771 (2017) 349
- X. Yao et al. PRD 97 (2018) 074003
- S. Cho et al. PRC 101 (2020) 024902
 - etc...

study of multi-charm baryons over different collisions systems (e.g. from O-O to Pb-Pb) very sensitive to the nonequilibrium features of charm quarks

coalescence 10-4 coal. ArAr-KrKr-OC w/PbPb distribution Pb-Pb SHM Kr-Kr scaling N_c(N_c/V)^{C-1} 10⁻⁵ dN/dy Ω_{ccc} PbPb 0 14 KrKr ArAr 0.12 0.08 Np 00 10⁻⁶ Ar-Ar charm ₹00.06 50.04 0.02 0.00 10-7 з 0.5 1.5 2 2.5 0 PT [GeV] 0-0 3 3.5 6.5 2 25 4 4.5 5 5.5 6 A^{1/3}

V. Minnisale et al. arXiv:2305.03687

In heavy-ion collisions doable only with ALICE 3

ALICE 3 LOI arXiv:2211.02491

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 824093.

p_T range drives the physics

