High-density QCD physics & the study of the QGP in the HL-LHC era

Florian Jonas

Workshop on High Luminosity LHC and Hadron Colliders 03.10.2024, LNF, Italy

Lawrence Berkeley National Laboratory

High-density QCD physics & the study of the QGP in the HL-LHC era at the HL-LHC

Florian Jonas

Workshop on High Luminosity LHC and Hadron Colliders 03.10.2024, LNF, Italy

RTALA

Lawrence Berkeley **National Laboratory**

collisions of heavy-ions at the LHC produce QCD matter at unprecedented temperatures!

collisions of heavy-ions at the LHC produce QCD matter at unprecedented temperatures!

collisions of heavy-ions at the LHC produce QCD matter at unprecedented temperatures!

collisions of heavy-ions at the LHC produce QCD matter at unprecedented temperatures!

(High energy) Heavy-ion physics

By colliding heavy-ions we can learn about the evolution of QCD matter in extreme conditions (high temperature and/or high density) using a toolbox of probes produced in all stages of collision

High-Luminosity LHC \rightarrow higher precision & opportunities for new observables

The high luminosity era for heavy-ions

The High Luminosity LHC: CERN-2020-010

- **LS2:** LHC injector upgrades; Pb-Pb rate $\sim 10 \text{kHz} \rightarrow 5$
- LS3: HL-LHC installation; pp $\sim 460/\text{fb} \rightarrow 3000/\text{fb}$ (

Trigger/Readout compared to Run 2:

- ALICE: increase of MB Pb-Pb x100 compared to R
- ATLAS/CMS: increase of MB (rare triggers) x5 (x)
- LHCb: full delivered luminosity (up to 30% central P

2026-2028	2029-2032	2033-2034	2035-2041		
LS 3	Run 4	LS 4	Runs 5&6		
	Pb-Pb 6.8/nb p-Pb 0.6/pb		Pb-Pb 35/nb (tbd)		
	High-Luminosity LHC				
50kHz HL-LHC)	HIL	. for heavy-ic	ons is already ong		
un 2					
10) b-Pb in Run 3 a	& 4)		$\int \int $		
			ALICE-PHO-GEN-2022		

9 **Florian Jonas**

2	0 26 -3	2028	2029-2032	2033-2034	2035-2041	_		
	LS	3	Run 4	LS 4	Runs 5&	6		
				High Luminocit				
	Lŀ	ICb:		riigii-Lummosit	Y LFIC			
	•	VELO &	& Upstream tr	acker upgrade	es			
Ζ		Calorim	eter. & muon	upgrades				
3		Smaller	detector cons	olidation & er	nhancements			
4	۲	LHCb l	Jpgrade II			L		
	CN	MS:						
		New GE	EM detectors					
		Vew inr	nermost barrel	pixel layer				
3		Upgrad	ed triggers &	DAQ, MTD				
		New In	her tracker $+$	calo. endcap -	$+ \mu$ detector			
nown	. Also	interesting	; upgrades at SPS e	.g. NA60+				

ALICE 2.1 upgrades

FoCal TDR: CERN-LHCC-2024-004

ITS3 TDR: CERN-LHCC-2024-003

ATLAS/CMS Phase 2 upgrades

CERN-LHCC-2012-022, CERN-LHCC-2017-005, -007, -017, -018, -020

CMS-TDR-14, -19, -20 & more

ALICE3 & LHCb Upgrade II

12 **Florian Jonas**

ALICE 3: CERN-LHCC-2022-009

Detector & Interaction rate improvements

13 Florian Jonas

Detector & Interaction rate improvements

13 **Florian Jonas**

Heavy-ion physics: The big questions

What are the macroscopic properties of the QGP? Temperature? Viscosity? QCD phase transition? Thermal photons, dileptons, quarkonia, flow

What are the initial conditions of a collision? nPDFs & Saturation? DY, UPC, forward LHC ...

Collectivity of QCD across system sizes?

Flow in pp, p-A; strangeness production, energy loss, thermal radiation

What is the microscopic dynamics of QGP at various length scales? Jets (substructure), γ/Z -jet correlations, heavy flavour, quarkonia, hadronization

arXiv:2211.04384

High-density QCD & QGP physics at the HL-LHC

IL-LHC

Heavy-ion physics: The big questions

How are partons distributed in a proton that is part of a bigger structure?

Proton PDF

Eur.Phys.J.C 82 (2022) 5, 428

How are partons distributed in a proton that is part of a bigger structure?

Proton PDF

Eur.Phys.J.C 82 (2022) 5, 428

How are partons distributed in a proton that is part of a bigger structure?

Proton PDF

Eur.Phys.J.C 82 (2022) 5, 428

Coverage of lepton-A, **pion-A** and **proton-A** data in nPDFs

- A decade of LHC data provided significant

Probing (nuclear) matter in a novel phase-space with high precision:

• W^{\pm}/Z production: sensitive to quark (n)PDF and heavy flavours

Probing (nuclear) matter in a novel phase-space with high precision:

- W^{\pm}/Z production: sensitive to quark (n)PDF and heavy flavours
- Low-mass Drell-Yan: precision measurement over wide mass range & differential in y offer possibility to test Q^2 evolution of nPDFs

IL-LHC

Probing (nuclear) matter in a novel phase-space with high precision:

- W^{\pm}/Z production: sensitive to quark (n)PDF and heavy flavours
- Low-mass Drell-Yan: precision measurement over wide mass range & differential in y offer possibility to test Q^2 evolution of nPDFs
- Vector meson, dijet & open charm prod. in UPCs: gluon densities at low-x

Gluon saturation:

- Below saturation scale Q_{sat} gluon fusion $(gg \rightarrow g)$ and splitting $(g \rightarrow gg)$ in equilibrium

$$Q_{\rm sat}^2 \approx \frac{x g_A(x,Q^2)}{\pi R_A^2} \propto A^{1/3} x^{-\lambda} \sim \mathcal{O}(1 \,{\rm GeV})$$

How can we probe gluon saturation experimentally in a meaningful way?

QCD phenomena evolve logarithmically in x and Q^2 \rightarrow logarithmically large experimental coverage in x and Q^2 desirable

Universality: theoretical description should be able to self consistently describe multiple observables in multiple collision systems

→ multi-messenger approach: measure multiple probes at various experimental facilities

Forward p-A collisions: The ALICE FoCal

DIS in e-A collisions: The Electron-Ion Collider (EIC)

	Inclusive DIS	SIDIS	DIS dijet	Inclusive in <i>p</i> +A	γ +jet in <i>p</i> +A	dijet in <i>p</i> +A
<i>xG</i> _{WW}	—	_	+	—	—	+
$xG_{\rm DP}$	+	+	_	+	+	+

Multiple processes in e-A DIS and forward p-A collisions are theoretically described using the same dipole/quadrupole scattering amplitudes!

measurements in e-A DIS and forward p-A collisions \rightarrow test universal description of gluon saturated matter

Bayesian inference already used successfully as a powerful tool study QGP \rightarrow let's use it in the saturation regime!

The whole picture (EIC + forward LHC/RHIC) will be more than the sum of its parts!

Nucl.Phys.A 1026 (2022) 122447

Nucl. Phys. B 335 (1990) 115

Forward p+A collisions

Measurement 1: Prompt photon production at forward rapidities

- from perf. studies
- comparable to D meson measurement by LHCb

Prompt photons \rightarrow **no final state and hadronisation effects** \rightarrow **universality test of low**-*x* **formalism**

Theory:

- Photoproduction cross section of vector mesons (e.g. J/ψ) in ultra-peripheral collisions (UPCs) proportional to gluon density squared at LO
- **Deviation from power-law** growth of cross section with increasing $W_{\gamma p}$ expected due to saturation effects

FoCal performance:

- FoCal allows to access unprecedented low-x, extending existing measurements to $W_{\gamma p} \approx 2 \text{ TeV} (10 \text{ GeV})$ in p-Pb (Pb-p) collisions + Pb-Pb collisions
- Studies with STARlight + GEANT show successful reconstruction of J/ψ and $\psi(2S)$

Theory:

ALICE

- Photoproduction cross section of vector mesons (e.g. J/ψ) in ultra-peripheral collisions (UPCs) proportional to gluon density squared at LO
- **Deviation from power-law** growth of cross section with increasing $W_{\gamma p}$ expected due to saturation effects UPC p-Pb $\sqrt{s_{NN}} = 8.16 \text{ TeV}, 150 \text{ nb}^{-1}$

FoCal performance:

- FoCal allows to access unprecedented low-x, extending existing measurements to $W_{\gamma p} \approx 2 \text{ TeV} (10 \text{ GeV})$ in p-Pb (Pb-p) collisions + Pb-Pb collisions
- Studies with STARlight + GEANT show successful reconstruction of J/ψ and $\psi(2S)$

Heavy-ion physics: The big questions

What are the initial conditions of a collision? **nPDFs & Saturation?** DY, UPC, forward LHC ...

Collectivity of QCD across system sizes? Flow in pp, p-A; strangeness production, energy loss, thermal radiation

What is the microscopic dynamics of QGP at various length scales? Jets (substructure), γ/Z -jet correlations, heavy flavour, quarkonia, hadronization arXiv:2211.04384

EM probes are produced in all stages of the collision

Main challenge: We measure "all" EM probes and need to distinguish the phases

Overview: Electromagnetic probes (e.g. photons & dileptons)

Each phase contains interesting physics!

Electromagnetic probes: thermal photons & dileptons

Baryon Chemical potential

Determining the QGP temperature with dileptons

Electromagnetic probes: thermal photons & dileptons

Baryon Chemical potential

Probing chiral symmetry restoration with dileptons

Heavy-ion physics: The big questions

What are the macroscopic properties of the QGP? Temperature? Viscosity? **QCD** phase transition? Thermal photons, dileptons, quarkonia, flow ...

What are the initial conditions of a collision? **nPDFs & Saturation**? DY, UPC, forward LHC ...

b

Collectivity of QCD across system sizes? Flow in pp, p-A; strangeness production, energy loss, thermal radiation

Heavy flavour

What is the nature of the QGP on a microscopic level? Insights from heavy quark interaction with QGP constituents $\rightarrow R_{AA}$ and flow with unprecedented precision \rightarrow QGP diffusion coefficient & energy loss \rightarrow To what degree do heavy quarks of thermalise in the QGP?

Heavy flavour

What is the nature of the QGP on a microscopic level? Insights from heavy quark interaction with QGP constituents $\rightarrow R_{AA}$ and flow with unprecedented precision \rightarrow QGP diffusion coefficient & energy loss \rightarrow To what degree do heavy quarks of thermalise in the QGP?

Heavy flavour

What is the nature of the QGP on a microscopic level? Insights from heavy quark interaction with QGP constituents $\rightarrow R_{AA}$ and flow with unprecedented precision \rightarrow QGP diffusion coefficient & energy loss \rightarrow To what degree do heavy quarks of thermalise in the QGP?

Novel insights into charm recombination using multi-charm hadrons

- Present: multi-strange baryon yield enhancement in Pb-Pb; first evidence Λ_C/D enhancement \rightarrow coalescence
- Run 3 & Run 4: precision studies in charm sector: single charm baryons
- Beyond Run 4: multi-charm baryons \rightarrow only produced by combination of uncorrelated charm quarks \rightarrow novel insights into production mechanism

ALICE3: unique opportunities to study 3 $\Xi_{cc}^{+}(ccd), \Xi_{cc}^{++}(ccu), \Omega_{cc}^{+}(ccs), \Omega_{ccc}^{++}(ccc)$ thanks to "strangeness tracking" in silicon pixel tracking layers

Novel insights into charm recombination using multi-charm hadrons

- Present: multi-strange baryon yield enhancement in Pb-Pb; first evidence Λ_C/D enhancement \rightarrow coalescence
- Run 3 & Run 4: precision studies in charm sector: single charm baryons
- Beyond Run 4: multi-charm baryons \rightarrow only produced by combination of uncorrelated charm quarks \rightarrow novel insights into production mechanism

ALICE3: unique opportunities to study ទ្រ $\Xi_{cc}^{+}(ccd), \Xi_{cc}^{++}(ccu), \Omega_{cc}^{+}(ccs), \Omega_{ccc}^{++}(ccc)$ thanks to "strangeness tracking" in silicon pixel tracking layers

Jets as a probe for the QGP

Jet physics: probing the short distance structure of QGP through scattering of a (multi-scale) hard probe

39 **Florian Jonas**

Physics: Microscopic QGP properties, extraction of transport coefficient \hat{q} , multi-scale probe for QGP

High-density QCD & QGP physics at the HL-LHC

н = 0.2

2

20 < p_{T,c}

Jet physics: probing the short distance structure of QGP through scattering of a (multi-scale) hard probe

ATLAS/CMS/ALICE will quantify jet suppression with unprecedented precision & kinematic reach \bigcirc

Physics: Microscopic QGP properties, extraction of transport coefficient \hat{q} , multi-scale probe for QGP

arXiv:2308.16131

Jet physics: probing the short distance structure of QGP through scattering of a (multi-scale) hard probe

- ATLAS/CMS/ALICE will quantify jet suppression with unprecedented precision & kinematic reach \bigcirc
- γ/Z -jet corr.: calibrated probe; controlled variation of q/g fraction, path length

39 **Florian Jonas**

Physics: Microscopic QGP properties, extraction of transport coefficient \hat{q} , multi-scale probe for QGP

arXiv:2308.16131

Jet physics: probing the short distance structure of QGP through scattering of a (multi-scale) hard probe

- ATLAS/CMS/ALICE will quantify jet suppression with unprecedented precision & kinematic reach
- γ/Z -jet corr.: calibrated probe; controlled variation of q/g fraction, path length
- differential studies in $p_{\rm T}$, R ...

Physics: Microscopic QGP properties, extraction of transport coefficient \hat{q} , multi-scale probe for QGP

Run 2 results show first indication of medium-induced jet deflection at low- $p_{\rm T}$ and large R \rightarrow HL-LHC allows more

High-density QCD & QGP physics at the HL-LHC

H = 0.2

2

20 < p_{T,c}

Jet physics: probing the short distance structure of QGP through scattering of a (multi-scale) hard probe

- ATLAS/CMS/ALICE will quantify jet suppression with unprecedented precision & kinematic reach
- γ/Z -jet corr.: calibrated probe; controlled variation of q/g fraction, path length
- differential studies in $p_{\rm T}$, R ...
- Jet substructure: resolving energy loss on the level of parton evolution through the medium

Physics: Microscopic QGP properties, extraction of transport coefficient \hat{q} , multi-scale probe for QGP

Run 2 results show first indication of medium-induced jet deflection at low- $p_{\rm T}$ and large R \rightarrow HL-LHC allows more

High-density QCD & QGP physics at the HL-LHC

H = 0.2

2

20 < p_{T,c}

A recent example from Hard Probes 2024 where HL-LHC can help

Summary and Outlook

Where we are: Constraints obtained using Bayesian inference

We learned a lot, but precision data provided by HL-LHC (+ theory advancements) are crucial!

Heavy-ion physics: The big questions

What are the macroscopic properties of the QGP? Temperature? Viscosity? QCD phase transition? Thermal photons, dileptons, quarkonia, flow ... Freeze

Initial state What are the initial conditions of a collision? **nPDFs & Saturation?** DY, UPC, forward LHC ... b **Collectivity of QCD across** system sizes? Pre-equilibrium Flow in pp, p-A; strangeness production, energy loss, Time thermal radiation

What is the microscopic dynamics of QGP at various length scales? Jets (substructure), γ/Z -jet correlations, heavy flavour, quarkonia, hadronization

High-density QCD & QGP physics at the HL-LHC

IL-LHC

Run 1 & Run 2: Full of surprises

- Long-range correlations observed in high mult. pp collisions and p-Pb collisions
- Strangeness enhancement observed in pp and p-Pb collisions \rightarrow smooth as a function of multiplicity 2.

Do we have QGP in small systems? (applying HI modelling in novel regimes?)

Is our understanding/description of pp physics still accurate? (additions to pp modeling?)

Run 3 and beyond: systematic study of "QGP signals" in pp, p-Pb and Pb-Pb collisions but also p-O and O-O

High luminosity allows overlap of high multiplicity pp collisions with up to 65% central Pb-Pb collisions!

"The ridge" and (multi) anisotropic flow in p-Pb collisions

Florian Jonas 44

- Significant progress in precision measurement of identified charged particle v_2 since first observation of "the ridge" in p-Pb collisions (also multi-particle correlations)
- Theory has room from **momentum correlations in initial** state to multiple scatterings in a QGP droplet

"The ridge" and (multi) anisotropic flow in p-Pb collisions

45 Florian Jonas

- Significant progress in precision measurement of identified charged particle v₂ since first observation of "the ridge" in p-Pb collisions (also multi-particle correlations)
- Theory has room from momentum correlations in initial state to multiple scatterings in a QGP droplet

"The ridge" and (multi) anisotropic flow in p-Pb collisions

Florian Jonas 46

- Significant progress in precision measurement of identified charged particle v_2 since first observation of "the ridge" in p-Pb collisions (also multi-particle correlations)
- Theory has room from **momentum correlations in initial** state to multiple scatterings in a QGP droplet

Jet quenching in p-Pb collisions?

- Jets are a key observable in heavy-ion collision; significant jet quenching observed in Pb-Pb collisions
- BUT: so far no jet quenching observed in p-Pb collisions within experimental uncertainties
- Significant increase in p-Pb statistics at HL-LHC \rightarrow higher sensitivity to energy loss in p-Pb

ALICE Run 1/2

47 **Florian Jonas**

Closing thoughts

Looking at the whole picture: Bayesian inference

49 Florian Jonas

Bayesian Inference

Model parameters

Connections to other fields / Additional perspectives

Neutron stars

QCD Equation of State Neutron skin thickness Hypernuclei production arXiv:2112.05323

Hadron physics

Residual interaction in pairs and triplets of hadrons, including charm

Nature 588 (2020) 232-238

Black Holes and gravitational radiation

interesting theoretical connections between Color Glass Condensate and Black Holes

Phys.Lett.B 853 (2024) 138669

All four experiments will undergo major upgrades allowing to exploit this data

We have the tools to explore all stages of a heavy-ion collisions, including the QGP ...

- ... with unprecedented precision
- ... in a wider phasespace
- ... more differentially
- ... with entirely new observables

The <u>whole picture</u> painted at the HL-LHC will improve our understanding of QCD in extreme conditions

Special thanks to the people who helped me with this talk:

C. Loizides, P. Jacobs, A. Dainese

51 **Florian Jonas**

Thank you for your attention!

More details in CMS DP -2021/037

The ALICE FoCal

- upgrade to the ALICE detector covering very forward rapidities $3.2 < \eta < 5.8 \to x \sim 10^{-6}$
- FoCal-E is a highly granular Si-W calorimeter combining two sensor technologies: 18 silicon pad layers (1x1cm²); two pixel layers $(30 \times 30 \mu m^2)$

1 cm

• **FoCal-H** uses scint. fibres embedded into Cu tubes

FoCal capabilities allow explorations of gluon saturation using a **multi-messenger approach**:

- Prompt photon production
- γ -hadron correlations
- Production of π^0 , η and vector mesons
- Jet measurements (e.g. dijet production)
- Vector meson photoproduction in UPCs

Prompt photon production at forward rapidities

- from perf. studies
- comparable to D meson measurement by LHCb

Prompt photons \rightarrow **no final state and hadronisation effects** \rightarrow **universality test of low**-*x* **formalism**

Quarkonia

Systematic investigation of in-medium force through spectroscopy of bound states that dissolve/re-generate in QGP

- Charmonia: charm diffusion in QGP & recombination: \rightarrow precision studies of J/ψ suppression and flow; access to rare excited states
- Bottomonia: lower importance of regeneration; access to $\Upsilon(3S)$ and Bottomonia flow!
- Exotica: access to exotic states in heavy-ion collisions in reach \rightarrow properties, binding potential, hadronisation mechanism

