Recent Results from Belle II experiments

Cristina Martellini On behalf of the Belle II collaboration

cristina.martellini@infn.it

Workshop on HighLumi-LHC and Hadron Colliders Frascati, 01-04 October 2024

Belle II experiment: SUPERKEKB complex

- Asymmetric e^+e^- colliders
- Collisions mainly at 10.58 GeV, i.e at $\Upsilon(4S)$ resonance

Workshop on HighLumi-LHC & Hadron Colliders - C.Martellini

2019-current

$$- e^+ (4 \text{ GeV}) e^- (7 \text{ GeV})$$

Target:

$$\int Ldt = 50 \ ab^{-1}$$

 $L_{peak} = 6 \times 10^{35} \ cm^{-2} s^{-1}$

Achieved:

$$\int Ldt > 530 \ fb^{-1}$$

$$L_{peak} = 4.7 \times 10^{34} \ cm^{-2} s^{-1}$$

Current world record

Benefits from **clean environment** at lepton colliders + hermetic detector

- Excellent overtaxing and tracking performances

- Running mainly $\sqrt{s} = 10.58$ GeV, very well-known initial state
- Multipurpose detector with cylindrical symmetry
- Efficient reconstruction of **neutrals** (π^0, η)
- Specific low-multiplicity triggers: single track, /muon / photon (previously not available at Belle and BaBar)
- Excellent particle identification system

WLSF: wavelength-shifting fiber MPPC: multi-pixel photon counter

Belle II data -taking

July 2022: First LS1 to allow the installation of two layers PXD detector

February 2024: start of RUN2

Workshop on HighLumi-LHC & Hadron Colliders - C.Martellini

We are suffering from **sudden beam loss events**, with large doses at the interaction region.

In a couple of them two channels of **PXD were damaged**

- as a precaution, it has been decided to **keep PXD off** while investigating the sources of the sudden beam loss and implement countermeasures to stabilize the beam operation

Belle II Physics Program

Workshop on HighLumi-LHC & Hadron Colliders - C.Martellini

 $B \to X_{\mu} l\nu, B \to X_{c} l\nu$

6

Workshop on HighLumi-LHC & Hadron Colliders - C.Martellini

New measurements from Belle II

Full Run1 data of 364 fb^{-1} with inclusive tagging strategy

- Extract signal yield by combined fit of M_{bc} and ΔE for each bin of q^2 :
 - 13 bins for π -mode
 - 10 bins of ρ -mode
 - Build up BDT discriminator to suppress $B \rightarrow X_c l \nu$ and continuum

$$\mathscr{B}(B^0 \to \pi^- l\nu_l) = (1.516 \pm 0.042(stat) \pm 0.059(sys)) \times 10^{-4}$$

 $\mathscr{B}(B^0 \to \rho^0 l^+ \nu_l) = (1.625 \pm 0.079(stat) \pm 0.180(sys)) \times 10^{-4}$

$$|V_{ub}|_{B \to \pi l\nu} = (3.73 \pm 0.07(stat) \pm 0.07(sys) \pm (0.16(theo)))$$

$$|V_{ub}|_{B \to \rho l\nu} = (3.19 \pm 0.12(stat) \pm 0.17(sys) \pm (0.26(theo)))$$

Workshop on HighLumi-LHC & Hadron Colliders - C.Martellini

arXiv.2407.17403

submitted to PRD

M_{bc} [GeV]

$B^0 \rightarrow \pi^0 \pi^0$ at Belle II : overview

Tree level $b \to u$ processes allow extraction of ϕ_2 (or α) (least precise CKM angle)

Build upon previous Belle II effort and extend to full **RUN1 data sample with improvements**:

- Improved photon selection
- Bkg mostly from continuum and $B^+ \to \rho^+ \pi^0; B^0 \to K_s \pi^0$
- Statistical and systematic uncertainty reduced by 10% and 50% respectively on BF and absolute uncertainty on A_{CP}
- Simultaneous fit to M_{bc} , ΔE , C, w: where C is the continuum variable

- and w is the wrong tag probability

$$\mathscr{B}(B^0 \to \pi^0 \pi^0) = (1.26 \pm 0.20 \pm 0.12) \times 10^{-6}$$
$$\mathscr{A}_{CP}(B^0 \to \pi^0 \pi^0) = (0.06 \pm 0.30 \pm 0.05)$$

- Agreement with previous measurements
- Comparable precision with world best result from BaBar

Workshop on HighLumi-LHC & Hadron Colliders - C.Martellini

Rare Decays : $B^+ \rightarrow K^+ \nu \bar{\nu}$ motivation

 $\rightarrow s \nu \bar{\nu}$ are highly <u>suppressed</u> in the SM Highly sensitive to non-SM contributions 0

- Precise prediction in the SM: $\mathscr{B}(B^+ \to K^+ \nu \bar{\nu}) = (5.6 \pm 0.4) \times 10^{-6}$ 0
 - Leading theoretical uncertainties from hadronic form factors
 - Existing results are from BaBar (<u>PhysRevD.87.112005</u>) and first analysis with Belle II (<u>Phys.Rev.Lett.127.181802</u>)

- Experimental challenges: Low BF with 2 neutrinos in the final state and high bkg contamination mainly from continuum
 - Used to complementary B tag approach : low purity-high efficiency (0.8%-8%) and its opposite (3.5% - 0.4%)
 - Signal selection combines kaon, event topology and the rest of the event properties in MVA classifiers
 - Bkg validation : from semileptonic B-decays: $(B^+ \rightarrow K^+ n \bar{n}, B^+ \rightarrow K^+ K^0 K^0)$
 - Inclusive method validated by closure test by measuring. $\mathscr{B}(B^+ \to \pi^+ K^0)$

Workshop on HighLumi-LHC & Hadron Colliders - C.Martellini

PhysRevD.109.112006

Belle reports upper limits only; branching fractions are estimated using published number of events and efficiency

Rare Decays : $B^+ \to K^+ \nu \bar{\nu}$ evidence

• Parameter of interest: $\mu = \frac{\mathscr{B}(B^+ \to K^+ \nu \bar{\nu})}{\mathscr{B}_{\mathscr{S}} \mathscr{M}(B^+ \to K^+ \nu \bar{\nu})}$

• **Binned fit** to extract μ :

- HTA: fit on a classifier output $\eta(BDT_h)$

• Combining ITA & HTA we have a 10% increase in precision w.r.t ITA alone

Workshop on HighLumi-LHC & Hadron Colliders - C.Martellini

PhysRevD.109.112006

Rare Decays : $B^0 \to K^{*0} \tau^+ \tau^-$ motivation

• These processes are suppressed in the SM and occur only a loop level $\mathscr{B}_{SM} = (0.98 \pm 0.10) \times 10^{-7}$

• Sensitive to new physics models accommodating the $b \rightarrow c\tau\nu$ anomalies

• Might correlate with enhanced $b \rightarrow s\tau\tau$ decay rates

• Belle (711 fb⁻¹): $\mathscr{B}(B^0 \to K^{*0}\tau^+\tau^-) < 3.1 \times 10^{-3}$ @ 90% C.L.

Experimental challenges:

- Low branching fraction
- No signal peaking kinematic observable
- Large background + more than 3 prompt tracks
- Up to 4 neutrinos originating from τ
- K^{*0} has low momentum due to the phase space

Preliminary, paper in preparation

- Combination of charged particle from τ decay lead to 4 categories: $ll, l\pi, \pi\pi, \rho X$
- **BDT** is trained using missing energy, extra cluster energy in EM calorimeter, $M(K^{*0}t_{\tau}), q^2$, etc
- BDT output $\eta(BDT)$ is used to extract the signal yield with simultaneous 0 fit to 4 categories

$$\mathscr{B}(B^0 \to K^{*0}\tau^+\tau^-) = 1.8 \times 10^{-3}$$
 @ 90% C

• Twice better with only half sample w.r.t Belle : better tagging & signal efficiency

• The most stringent limit on the $B^0 \to K^{*0} \tau^+ \tau^-$ decay and in general on $b \to s \tau \tau$ transition

Workshop on HighLumi-LHC & Hadron Colliders - C.Martellini

Rare Decays : $B^0 \to K_S^0 \tau^{\pm} l^{\mp}$ motivation

- New heavy particles might accommodate the $\mathscr{B}(B^{\pm} \to K^{\pm} \bar{\nu} \nu)$ excess and $b \to c \tau \nu$ anomalies
 - new physics coupling preferentially to 2nd and 3rd generation leptons could result in observable decays to $b \rightarrow s\tau l$ (Lepton Flavor Violation-LFV)
- BaBar (428 fb⁻¹) : $B^+ \to K^+ \tau^{\pm} l^{\mp}$ <u>PRD.86.012004</u>
- LHCb (9 fb⁻¹) : $B^+ \to K^+ \tau^+ \mu^-$, $B^0 \to K^{*0} \tau^\pm \mu^\mp$ <u>JHEP.06.129</u>, <u>arXiv.2209.09846</u>
- Belle (711 fb⁻¹) : $B^+ \to K^+ \tau^{\pm} l^{\mp}$ <u>PRL.130.261802</u>

Most stringent UL

Workshop on HighLumi-LHC & Hadron Colliders - C.Martellini

Preliminary, paper in preparation

• First search in $B^0 \to K_s^0 \tau^{\pm} l^{\mp}$

• Belle + Belle II (711+364 fb^{-1}) + hadronic B-tagging

Rare Decays : $B^0 \to K^0_S \tau^{\pm} l^{\mp}$ strategy and results

- Final states involving presence of neutrinos \rightarrow can compute recoil mass of τ
- K_{S}^{0} reconstructed from a pair of opposite charged pions \longrightarrow after selections more than 98% purity
- Semileptonic B decays are primarily **background**
- The remaining background is treated with the use of a **BDT**

90% U.L. are derived:

$$\begin{aligned} \mathscr{B}(B^{0} \to K_{S}^{0}\tau^{+}\mu^{-}) < 1.1 \times 10^{-5} \\ \mathscr{B}(B^{0} \to K_{S}^{0}\tau^{-}\mu^{+}) < 3.6 \times 10^{-5} \\ \mathscr{B}(B^{0} \to K_{S}^{0}\tau^{+}e^{-}) < 1.5 \times 10^{-5} \\ \mathscr{B}(B^{0} \to K_{S}^{0}\tau^{-}e^{+}) < 0.8 \times 10^{-5} \end{aligned}$$

The results are among the most stringent limits

Workshop on HighLumi-LHC & Hadron Colliders - C.Martellini

Belle II Physics Programs

Workshop on HighLumi-LHC & Hadron Colliders - C.Martellini

Spectroscopy: Improved measurements of $\Upsilon(10753)$ **at Belle II**

• New energy scan performed by **Belle II** to fill in the gaps of **Belle** scan For a total integrated luminosity of 19 fb^{-1}

• Observation of $\Upsilon(10753)$ in agreement with Belle results

 $M(\Upsilon(10753)) = 10756.6 \pm 2.7 \pm 0.9 \text{ MeV/c}^2$ $\Gamma(\Upsilon(10753)) = 29.0 \pm 8.8 \pm 1.2 \text{ MeV/c}^2$

No signal of intermediate Z_{h}^{+} (10610/10650) observed

Workshop on HighLumi-LHC & Hadron Colliders - C.Martellini

arXiv.2401.12021

Spectroscopy: Search for $\Upsilon(10753) \rightarrow \omega \eta_b(1S)/\chi_{b_0}(1P)$ **at Belle II**

• $\Upsilon(10753)$ tetraquark interpretation predicts a strong transition to $\omega \eta_b(1S)$ Compared to $\pi^+\pi^-\Upsilon(nS)$

• Validate the model with reconstruction of $\omega \rightarrow \pi^+ \pi^- \pi^0$ and look for a peak in the recoil mass distribution

$$\begin{split} \sigma(e^+e^- \to \omega\chi_{b0}(1P)) &< 7.8 \ \mathrm{pb}(\,^*\,) \\ \sigma(e^+e^- \to \omega\eta_b(1S)) &< 2.5 \ \mathrm{pb} \end{split}$$

No significant signal observed

10 MeV/c² be Candidates

supported

(*) obtained by averaging the result of this analysis with the previously published one Phys. Rev. Lett. 130, 091902

Workshop on HighLumi-LHC & Hadron Colliders - C.Martellini

PRD,109.072013

Measurement of $e^+e^- \rightarrow \pi^+\pi^-\pi^0$ cross section at Belle II

- Motivation:
 - Non-negligible uncertainty in the theoretical predictions
 - hadron vacuum polarisation produces the largest uncertainty in the dispersive prediction of $(g 2)_{\mu}$ (HVP, 82%)
 - Cross section $e^+e^- \rightarrow hadrons$ is an input to the dispersive calculation and gives largest uncertainty

Perform the measurement in the energy range from 0.62 GeV to 3.50 GeV

- Initial-state radiation (ISR) method

arXiv.2404.04915

Measured at Belle II exploiting $e^+e^- \rightarrow \pi^+\pi^-\pi^0\gamma_{ISR}$ \rightarrow Scan region 0.7 < \sqrt{s} < 3.5 GeV by γ_{ISR} reconstruction

Allows to scan a wide range of $M(\pi\pi)$ rather than having to scan the c.m energy

Used 191 fb⁻¹ of Belle II data (a) $\Upsilon(4S)$

Recent predictions of LQCD show $2 - 3\sigma$ differences from values based on dispersion relations \rightarrow new experimental measures are important

Measurement of $e^+e^- \rightarrow \pi^+\pi^-\pi^0$ **cross section at Belle II**

Measured at Belle II with Signal process : $e^+e^- \rightarrow \gamma_{ISR}\pi^+\pi^-\pi^0(\rightarrow\gamma\gamma)$

- Signal extracted by fitting $M(\gamma\gamma)$ in each $M(3\pi)$ bin
- Signal efficiency and DATA/MC corrections:
 - Tracking efficiency
 - π^0 detection efficiency
 - High energy photon detection efficiency
- Systematic uncertainty dominates: modelling of higher-order corrections and efficiency

 $a_{\mu}^{LO,HVP,3\pi}(0.62 - 1.8GeV) = (48.91 \pm 0.25_{stat} \pm 1.07_{syst}) \times 10^{-10}$

Workshop on HighLumi-LHC & Hadron Colliders - C.Martellini

arXiv.2404.04915

LFU tests - Light lepton universality in τ decays

In the SM all charged leptons have equal coupling strength ($g\ell$) to the W boson: LFU \rightarrow may be violated by new forces [1]

For each $B\bar{B}$ event we get ~ a $\tau\tau$ pair \rightarrow Belle II optimal for τ physics too

$$R_{\mu} = \frac{\mathscr{B}(\tau^- \to \mu^- \bar{\nu}_{\mu} \nu_{\tau})}{\mathscr{B}(\tau^- \to e^- \bar{\nu}_e \nu_{\tau})}$$

• Test of μ/e universality in τ decays

- In the $e^+e^- \rightarrow \tau^+\tau^-$ one can separate the event in two hemispheres: tag τ , and signal τ

Purity 96% and 92% for electron and muon channels Full Belle II RUN1 data sample 364 fb⁻¹ 0.167 GeV/c Belle II preliminary $(\tau^- \rightarrow \mu^- \tilde{\nu}_{\mu} \nu_{\tau})(\tau^+ \rightarrow h^+ n \pi^0 \tilde{\nu}_{\tau})$ $L dt = 362 \, fb^{-1}$ -Signal side: e or μ Uncertainty -Tag side: 1 charged hadron + $\geq 1\pi^0$ Events per - Background suppression using a Neural Network - Systematics dominated by eID and trigger model .01 1.0 + Data R_{μ} obtain by binned maximum likelihood 5.0 2.5 4.5 1.5 2.0 3.0 3.5 fit on momentum spectra on μ/e p_{μ} [GeV/c]

Most precise test of light lepton universality in τ decays

Workshop on HighLumi-LHC & Hadron Colliders - C.Martellini

$$\left(\frac{g_{\mu}}{g_e}\right)_{\tau} = \sqrt{\frac{R_{\mu} f(m_e^2/m_{\tau}^2)}{f(m_{\mu}^2/m_{\tau}^2)}}$$

Search for LFV decays: $\tau^{\pm} \rightarrow \mu^{\pm} \mu^{\mp} \mu^{\pm}$

$$\tau^{\pm} \to \mu^{\pm} \mu^{\mp} \mu^{\pm}:$$

- Almost free from SM background
- Very good resolution on the energy and momentum
- Can also be probe by LHC experiments

- Existing measurements : 2.1×10^{-8} by Belle (<u>Phys.Lett.B687</u>) 2.9×10^{-8} by CMS (<u>Phys.Lett.B853</u>)

Untagged event selection:

- We reconstruct signal candidate by combining three muons
- No explicit reconstruction of the other τ : everything that is not the signal candidate is **combined in an unique object** called Rest of the Event (ROE)

- Allows to target all the 1 and 3 prong* decays of the other τ

*prong = Number of charged particles

Workshop on HighLumi-LHC & Hadron Colliders - C.Martellini

 $\tau \to l\gamma, \tau \to l\phi, \tau \to lll$

These are rare decays : it's all about **maximising the statistics!**

arXiv:2405.07386

Accepted by JHEP

A lot of interest in LFV decays at e^+e^- colliders, with ~ 50 modes:

$\tau^{\pm} \rightarrow \mu^{\pm} \mu^{\mp} \mu^{\pm}$: background suppression

Background suppression

- With a set of selection cuts to remove low multiplicity QED processes, mis-modelled background

Final signal efficiency : 20.4%

(3 times higher than Belle's efficiency)

Accepted by JHEP

A **BDT classifier** with k-folding to reject $e^+e^- \rightarrow q\bar{q}$ events

- Rest of Events kinematics, signal candidate, missing momentum informations

$$\tau^{\pm} \rightarrow \mu^{\pm} \mu^{\mp} \mu^{\pm}$$
: results

Signal yield is extracted with a poisson counting experiment - Signal region defined as <u>an ellipse</u> in the 2D plane $(M_{3\mu}, \Delta E_{3\mu})$

$$(\Delta E_{3\mu} = \frac{E_{beam}}{2} - E_{3\mu})$$

$$\mathscr{B}(\tau \to \mu \mu \mu) = \frac{N_{obs} - N_{exp}}{2\sigma_{\tau\bar{\tau}} \cdot \mathscr{L} \cdot \epsilon_{3\mu}}$$

-0.2

Number of expected background $N_{exp} = 0.7^{+0.6}_{-0.5} \pm 0.01$

-0.3

Obtained by rescaling the yields from <u>the sidebands</u> data in the signal region

> 90% CL upper limit on Branching Fraction $\mathscr{B}(\tau \to \mu \mu \mu) < 1.9 \times 10^{-8}$ World's best limit!!!

Workshop on HighLumi-LHC & Hadron Colliders - C.Martellini

Conclusions

- Belle and Belle II have been and will continue to collect excellent data for various physics programs
- Many more measurements are in progress
- You can find more on our public publications page : <u>https://www.belle2.org/research/physics/publications</u>
- Only a small fraction of the exciting results are included in this talk

• Looking forward to more data in the coming years

Workshop on HighLumi-LHC & Hadron Colliders - C.Martellini

• Belle II has restarted collecting data from its Run2, aiming to significantly increase its data sample in the next few years

Thank you for your attention

Back up slides

Open question unexplained by $SM \rightarrow New$ *Physics beyond the* SM

Belle & Belle II operates at the "Intensity Frontier"

High precision measurements, probing SM indirectly - as measurements of the SM-forbidden or suppressed process

B-factories:

 e^+e^- collider (a) $\Upsilon(4S) \to B\bar{B}$

SuperKEKB collider : $530 fb^{-1}$ @ $\Upsilon(4S)$ [2019-current]

KEK-SUPERKEKB complex

- Asymmetric e^+e^- colliders
- Collisions mainly at 10.58 GeV, i.e at $\Upsilon(4S)$ resonance

KEKB

1999-2010

- $e^+ (3.5 \text{ GeV}) e^- (8 \text{ GeV})$
- L_{peak} : 2.1 × 10³⁴ cm⁻²s⁻¹ [achieved]

SuperKEKB

2019-current

-
$$e^+$$
 (4 GeV) e^- (7 GeV)

Target:

$$\int Ldt = 50 \ ab^{-1}$$

$$L_{peak} = 6 \times 10^{35} \ cm^{-2} s^{-1}$$

Achieved:

$$\int Ldt > 530 \ fb^{-1}$$

$$L_{peak} = 4.7 \times 10^{34} \ cm^{-2} s^{-1}$$

Current world record

Belle & Belle II detectors

ECL (electromagnetic calorimeter): Updated electronics

- **PID** (Particle Identification):
- **CDC** (Central drift chamber):
- Better K/ π separation under higher bkg level
- larger volume, smaller drift cells and faster electronics
- VTX: + 2 layers PXD (pixel detector) + 4 layers SVD (Silicon vertex detector)

- Well-known **initial state** condition
- Benefits from <u>clean environment</u>
- Efficient reconstruction of **neutrals**
- Boosted center of mass that allows for time-dependent measurements
- Hermetic detectors ideal for studying neutral or invisible decays

Belle II TDR

neasurements visible decays

- LFU: SM expects lepton coupling to EW gauge boson to be flavour-universal
- **Ratio** of the branching-fraction of senile-tonic decays

$$R(H_{\tau/l}) = \frac{Br(B \to H\tau\nu_{\tau})}{Br(B \to Hl\nu_{l})}$$

Where H = D,D*, X, π ... and l= e, μ
New

- Measurement of $R(X_{\tau/l})$ has been carried out with 189 fb^{-1} of Belle II data
 - Reconstruction of $B \to X \tau \nu_{\tau}$ and $B \to X l \nu_{l}$:

 - <u>Signal</u>: $B \to X \tau \nu_{\tau}$ with leptonic decays $(\tau \to e \bar{\nu}_e \nu_{\tau} / \mu \bar{\nu}_{\mu} \nu_{\tau})$
 - <u>Normalisation</u>: $B \rightarrow Xl\nu_l$ (with l= e, μ)

Background contamination and modeling of many decay channels in signal side is the challenge

Phy.Rev.Lett.132.211804

0.4 $R(D^*)$ 68% CL contours HFLAV Moriond 2024 Belle^a BaBar 0.35 LHCb^c BelleII 0.3 LHCb^b LHCb^a 0.25 SM 0.2 $\begin{array}{l} R(D) = 0.342 \pm 0.026_{total} \\ R(D^*) = 0.287 \pm 0.012_{total} \end{array}$ HFLAV SM Prediction $R(D) = 0.298 \pm 0.004$ $\rho = -0.39$ $R(D^*) = 0.254 \pm 0.005$ $P(\chi^2) = 35\%$ 0.5 0.2 0.3 0.4

- <u>Hadronic tag:</u> tagged B reconstructed in its hadronic decay modes (using Full Event Interpretation (FEI))

- Signal extraction:
 - 2D binned maximum likelihood fit to extract the **signal** and **normalization** yields for both electrons and muons modes simultaneously

- In bins of
$$p_l^B$$
 and M_{miss}^2

- e channel: $R(X_{\tau/e}) = 0.232 \pm 0.020(stat) \pm 0.037(syst)$
- μ channel: $R(X_{\tau/\mu}) = 0.222 \pm 0.027(stat) \pm 0.050(syst)$

 $R(X_{\tau/l}) = 0.228 \pm 0.016(stat) \pm 0.036(syst)$

Agreement between the e and μ channel measurements

Consistent with SM prediction (0.221 \pm 0.004) and $R(D^*)$ anomalies

Phy.Rev.Lett.132.211804

$M_{\text{miss}}^2 \in (1, 2.3] \left[M_{\text{miss}}^2 \in (2.3, 4] \right] M_{\text{miss}}^2 \in (4, 6]$ $M_{\rm miss}^2 < 1$ u²⁰ Ъ¹⁶ 2.0 events 8 Resid. Nor p_e^B [GeV/c] **Belle II** $M_{\rm miss}^2 < 1$ 20 2.4 16 2.0 12

Belle II

30

Хеν

<0.5</bd>
<0.70</td>0.700.951.151.40>2.3

- Used to complementary B tag approach : low purity-high efficiency (0.8%-8%) and its opposite (3.5%-0.4%)
- **Signal validation:** event selection by combining signal Kaon, event topology, rest of the event in the MVA classifiers
- **Background validation:** background from continuum

Semileptonic B decays

 $B^+ \to K^+ n \bar{n}$

 $B^+ \rightarrow K^+ K^0 \bar{K^0}$

 $B \to K^+ D(\to K_I X)$

pions fake

• **Inclusive method validation**:

- Closing test by measuring $\mathscr{B}(B^+ \to \pi^+ K^0)$

PhysRevD.109.112006

• Full Belle II Run1 data sample (362 fb^{-1})

- Flavor-changing Neutral Current (FCNC) $b \rightarrow d$ decay with Highly suppressed in the SM, sensitive to New physics
- Two photons in the final states makes it experimentally challenging
 - Previous measurements only set upper limits

Experiment	$\int \mathscr{L} dt$	Limits @ 90 C.L
L3	$73 \ pb^{-1}$	3.9×10^{-5}
Belle	$104 fb^{-1}$	6.2×10^{-7}
Babar	$426 \ fb^{-1}$	3.2×10^{-7}

• Improve with larger statistics: Belle (694 fb^{-1}) + Belle II Run1 data (362 fb^{-1})

arXiv:2405.19734

Accepted by PRDL

$$\mathscr{B}(SM) = 1.4^{+1.4}_{-0.8} \times 10^{-8}$$

Phys.Lett.B363 137 Phys.Rev.D.73.051107 Phys.Rev.D.83.032006

Recent situation in muon g-2 anomaly

5σ significance through new direct measurements from Fermilab Non-negligible uncertainty in theoretical predictions

[2] Phys. Rept. 887, 1 (2020)

arXiv:2405.19734

Accepted by PRDL

$$= (3.7^{+2.2}_{-1.8}(stat) \pm 0.7(sys)) \times 10^{-8}$$

A lot of interest in LFV decays at e^+e^- colliders, with ~ 50 modes: $\tau \rightarrow l\gamma, \tau \rightarrow l\phi, \tau \rightarrow lll$

These are rare decays : it's all about **maximising the statistics!**

- Almost free from SM background
- Very good resolution on the energy and the momentum

Signal:

- reconstruction of signal candidate by combining three muons
 Background:
- Selections to remove low-multiplicity events
- BDT to reject $q\bar{q}$ events

90% CL upper limit on Branching Fraction

 $\mathscr{B}(\tau \to \mu \mu \mu) < 1.9 \times 10^{-8}$

World's best limit!!!

