

1

FCC-hh studies status and work ahead

Michele Selvaggi (CERN)

LNF 2024

Outline:

- Recap results for the CDR 100 TeV
	- Benchmark studies and detector requirements
	- New projections HH
- What is missing? Ideas for future studies ○ Physics ←→ Detectors/reconstruction
- How to get started?

What we cannot deliver:

- explore all new physics directions/mass couplings scale
- guarantee discovery

What we can deliver:

- precision
- sensitivity to new as many as possible scenarios of new physics
	- clear yes/no answers to concrete scenarios

High energy hadron machines

Pros:

- relatively democratic initial states, strong and electro-weak force
- high center of mass, thanks to \sim small synchrotron power loss $(m_e/m_p)^4$
	- caveat: at 100 TeV it becomes significant!
- high luminosity up to high energy

 p [TeV/c] = 0.3 B [T] R [km]

Cons:

- large backgrounds compared to lepton machines ($\alpha_{\rm s}$ > $\alpha_{\rm EMW}$), from
	- \circ high Q2 physics (di-jet, ttbar ...)
	- "simultaneous" p-p collision (pile-up)
		- Discovery machines for heavy new states
		- Also suited for precision (thanks to high rates)

Variants

Main challenge: high field superconducting > 14 T magnets, high PU

More variants

Limiting factor: 5MW synchrotron power $\sim \sqrt{s}$ ⁴

High energy hadron machines

To compute reach, we assume we need to observe given number of events:

Mass reach scaling

How does the reach for observing a a new state of mass M (e.g BSM Higgs, ...) scale from 14 TeV to 100 TeV ?

Assume we need the same number of events at 14 TeV and 100 TeV to claim discovery:

events $(\sqrt{s_2} = 100 \text{ TeV}) \approx #$ events $(\sqrt{s_1} = 14 \text{ TeV})$

$$
(M_2 / M_1) \sim (s_2 / s_1)^{1/2} \left[(s_1 / s_2) (\mathcal{L}_2 / \mathcal{L}_1) \right]^{1/(2a+1)}
$$
\n
$$
\approx I
$$

As expected, mass reach scales linearly with \sqrt{s}

Cross section scaling

How does the rate of a given process (e.g. single Higgs production) scale from 14 TeV to 100 TeV

$$
\frac{\text{cross-section } (\sqrt{s} = 100 \text{ TeV})}{\text{cross-section } (\sqrt{s} = 14 \text{ TeV})} \approx L_1 / L_2
$$

Very large rate increase by increasing center of mass energy

NB: this improvement only comes from the cross-section (neglects integrated luminosity)

High energy hadron machines

- **Total pp cross-section and Minimum** bias multiplicity show a modest increase from 14 TeV to 100 TeV
	- \rightarrow Levels of pile-up will scale basically as the instantaneous luminosity.
- **Cross-section for relevant processes** shows a significant increase.
	- \rightarrow interesting physics sticks out more !

Rate of increase from 14 TeV to 100 TeV:

- \cdot ggH x15
- \cdot HH \times 40
- \cdot ttH \times 55

reduction of x10-20 statistical uncertainties

Hadron Machines specs and detector requirements

lumi & pile-up

 $\rightarrow x6$ HL-LHC

LHC: 30 PU events/bc HL-LHC: 140 PU events/bc FCC-hh: 1000 PU events/bc

Physics at threshold

SM Physics is more forward @100TeV

If we want to maintain high efficiency in \bullet states produced at threshold need large rapidity (with tracking) and low p_T coverage

\rightarrow highly challenging levels of radiation at large rapidities

Boosted topologies at multi-TeV energies

The boosted regime:

 \rightarrow measure leptons, jets, photons, muons originating \sim 40-50 TeV resonances

Tracking:
$$
\frac{\sigma(p)}{p} \approx \frac{p\sigma_x}{BL^2}
$$
 Calorimeters: $\frac{\sigma(E)}{E} \approx \frac{A}{\sqrt{E}} \bigoplus B$

- Tracking target: $\sigma / p = 20\%$ @10 TeV
- Muons target: $\sigma / p = 10\%$ @20 TeV \sim
- Calorimeters target: containment of $p_T = 20 \text{ TeV}$ jets ٠

Boosted topologies at multi-TeV energies

min. distance to resolve two

ex for top:

 $p_{\tau} = 200 \text{ GeV} \rightarrow R \sim 2$ 1 TeV \rightarrow $D_{\tau} =$ $R \sim 0.4$ $R \sim 0.05$ $p_{\tau} =$ 10 TeV

- At 10 TeV whole jet core within 1 calo cell
	- neutrals possibly un-resolvable
		- B field "helps" with charged
	- PF reconstruction will be severely affected
		- Total jet energy OK, calo does good job
		- reed to be studied and rethought for
- Naive approach:
	- use calo for energy measurement
	- tracking for substructure identification

in CMS:

Tracking \rightarrow Δ R ~ 0.002 $FCAI$ $\rightarrow \Delta R \sim 0.02$ $AR \sim 0.1$ **HCAL**

High p_{τ} flavor tagging

- The boosted regime:
	- \rightarrow measure b-jets, taus from multi-TeV resonances
- Long-lived particles live longer:
	- ex: 5 TeV b-Hadron travels 50 cm before decaying 5 TeV tau lepton travels 10 cm before decaying
	- \rightarrow extend pixel detector further?
		- · useful also for exotic topologies (disappearing tracks and generic BSM Long-lived charged particles)
		- · number of channels over large area can get too high
	- \rightarrow re-think reconstruction algorithms:
		- hard to reconstruct displaced vertices
		- · exploit hit multiplicity discontinuity

Perez Codina, Roloff [CERN-ACC-2018-0023]

Only 71% 5 TeV b-hadrons $\text{decay} < 5\text{th layer}.$

• displaced vertices

Color Singlets (W/Z/H)

[Pierini]

- **Gluon**/**quark** jet looks the same at 50 GeV and 5 TeV (**QCD is ~ scale invariant**)
- **Color Singlets** look like taus (do not radiate, a part from occasional QED/EWK shower)
	- **○ high mass, highly isolated, highly collimated tracks**

Boosted Color Singlet ID

[Pierini]

Loss in performance, but no show stoppers Very simple heuristic based , can probably do much better with today's techniques

Boosted Colored Resonances

- **●** Multi TeV top radiates FSR at a typical scale angular scale ~ m / pT (deadcone)
- Large cone FSR can spoil mass by adding $\Delta m \sim m_{\text{top}}$ even for 1 GeV emission
	- \rightarrow use shrinking cone algo by reclustering with R \sim 4m/pT
	- use tracking for substructure

Challenges LHC

FCC-hh SM precision (Higgs, ..) High mass more collimated boost / M x higher rates larger background more forward **trade** medium rates small background more central

Higgs at 100 TeV vs HL-LHC and FCC-ee

- · 100 TeV provides unique and complementary measurements to ee colliders:
	- · Higgs self-coupling
	- · top Yukawa
	- \cdot Higgs \rightarrow invisible
	- \cdot rare decays (BR($\mu\mu$), BR(χ y), ratios, ..) measurements will be statistically limited at FCC-ee

Need to *improve*

Large rates for rare modes and HH production at FCC-hh

 \rightarrow complementary to e⁺e⁻

Higgs complementarity with lepton machines

At pp colliders we can only measure:

 σ_{prod} BR(i) = σ_{prod} Γ_i / Γ_H

 \rightarrow we do not know the total width.

In order to perform global fits, we have to make model-dependent assumptions

Instead, by performing measurements of ratios of BRs at hadron colliders:

$$
BR(H \rightarrow XX) / BR(H \rightarrow ZZ) \approx g_X^2 / g_Z^2
$$
from e-e-

We can "convert" relative measurements into absolute via gz thanks to e⁺emeasurement

 \rightarrow synergy between lepton and hadron colliders

Higgs production in hadron machines

30M Higgs pairs

Expected improvement at FCC-hh:

- 20 billion Higgses produced at FCC-hh
- · factor 10-50 in cross sections (and Lx10)
- · reduction of a factor 10-20 in statistical uncertainties

Large statistics will allow:

- for % level precision in statistically limited rare channels $(\mu\mu, \Sigma\chi)$
- · in systematics limited channel, to isolate cleaner samples in regions (e.g. @large Higgs p_T) with :
	- higher S/B
	- · smaller (relative) impact of systematic uncertainties

Factor: $1/100$ $1/10$ reduction in stat. unc.

Higgs rare decays

- study sensitivity as a function of minimum $p_T(H)$ requirement in the $\chi\chi$, $ZZ(4)$, $\mu\mu$ and $Z(1)$ χ channels
- low $p_T(H)$: large statistics and high syst. unc.
- large $p_T(H)$: small statistics and small syst. unc.
- O(1-2%) precision on BR achievable up to very high p_T (means 0.5-1% on the couplings)
- · I% lumi + theory uncertainty
- \cdot p_T dependent object efficiency:
	- $\delta \epsilon (e/\gamma) = 0.5$ (1)% at $p_T \rightarrow \infty$
	- $\delta \epsilon(\mu) = 0.25 (0.5)$ % at $p_T \rightarrow \infty$

 $H \rightarrow l l x$

400 450 500

 $p_{T,min}^H$ [GeV]

100 150 200 250 300 350

 10^{-}

50

BR $(\mu\mu, \gamma\gamma, Z\gamma)$ / BR(H \rightarrow ZZ)

- · measure ratios of BRs to cancel correlated sources of systematics:
	- luminosity
	- · object efficiencies
	- · production cross-section (theory)
- Becomes absolute precision measurement in particular if combined with $H \rightarrow ZZ$ measurement from e⁺e⁻ (at 0.2%)

1% precision

Top Yukawa, H→bb boosted

- production ratio $\sigma(\text{ttH})/\sigma(\text{ttZ}) \approx y_t^2 y_b^2/g_{ttZ}^2$
- measure $\sigma(\text{ttH})/\sigma(\text{ttZ})$ in $H/Z \rightarrow bb$ mode in the boosted regime, in the semi-leptonic channel
- perform simultaneous fit of double Z and H peak
- · (lumi, scales, pdfs, efficiency) uncertainties cancel out in ratio
- assuming g_{ttZ} and K_b known to 1% (from FCC-ee),

 \rightarrow measure y_t to 1%

complement using HTT

 24

 $\frac{1}{\sqrt{1-\frac{1}{2}}}\left(\frac{1}{2}-\frac{1}{2}\right)$ $\left\langle \cdot, ^{\mathrm{t}}_{\cdot} \right\rangle$

ttH

 $m_i(H)$ [GeV]

Higgs self-coupling

• x400 in event yields and x20 in precision

Expected precision: \bullet

Combined precision: \bullet

- 3.5-8% for SM (3% stat. only) \bullet
- 10-20% for $\lambda_3 = 1.5^* \lambda_3$ SM ٠

FCC-hh Simulation (Delphes)

HHVV coupling

With c_V from FCC-ee, δc_{2V} < 1%

Summary Higgs measurements

* From BR ratios wrt B(H \rightarrow 4l) @ FCC-ee

** From pp→ttH / pp→ttZ, using B(H→bb) and ttZ EW coupling @ FCC-ee

WIMP dark matter - disappearing track analysis

observed relic density

- \cdot M = 1 TeV Higgsino can be discovered
- \cdot M = 3 TeV Wino can be discovered

The energy frontier

Challenges: multi-TeV collimated top, W, τ highly collimated. Tracking is the key highly segmented calorimetry

Work ahead

Recap, how we proceeded for the CDR

- **Baseline detector concept in Delphes**
- Physics benchmarks
	- Higgs and SM
	- BSM

…

- **Refined detector requirements**
- Implementation on detector concept in full simulation
	- Study performance in full sim
- Improve detector parameterisation in Delphes

A detector concept that does the job ...

More variants

Limiting factor: 5MW synchrotron power $\sim \sqrt{s}$ ⁴

Wishlist

- Using the various benchmarks, explore impact of different:
	- c.o.m. energies 80-100-120 TeV
	- luminosities
		- and corresponding trade-offs and detector design implications
			- 80 TeV with 2x nominal luminosity or
			- 120 TeV with 0.5x nominal luminosity?
		- **■** beyond σ vs. *L* considerations (500PU vs 3000PU !!)
- Review physics benchmarks and corresponding objects most affected by machine conditions in view of recent LHC experience
	- HH, ttH, VBS
		- \blacksquare identification: b/ τ -tagging, forward jet tagging, photon fake-rate
		- **■** resolution: m_{bb} , $m_{\tau\tau}$, $m_{\gamma\gamma}$, E_{τ}^{miss}
		- triggering
	- \circ High p_{T} :
		- \blacksquare τ , W, H substructure vs extreme PU/collimation

Wishlist/open questions

- Explore novel calibration/reconstruction/pu subtraction techniques
	- identify clean control samples with large stats to calibrate critical objects and reduce systematics (e.g. γ -id with $Z \rightarrow \mu \mu \gamma$ samples) for robustness
	- \circ jet flavor tagging in extreme pile-up, impact of tracking geometry
	- 5D Particle-Flow reconstruction and PU subtraction (p,E,t)
		- conventional/AI based
- Explore new detector designs/ technologies, e.g:
	- ambitious technologies (LXe/LYSO calorimetry, MAPs, quantum sensors, ..)
		- for some far from rad. hardness/cost requirements
			- but R&D should be pursued with such goals in mind
	- new designs:
		- \blacksquare low PU detectors targeting low p_T physics
		- ATLAS without Toroid, muon det. simply to tag
			- enough selectivity with track triggering at L1?

Wishlist (single H)

- Add "missing" physics channels, exploring new ideas to reduce dependence on detector assumptions and systematics:
	- \circ H \rightarrow WW, bb, cc, $\tau\tau$
	- use ratios/double ratios
		- focus on boosted regime/similar production modes
			- For rate, object, lumi (partial or total) cancellations
	- study tradeoff between boost (syst) and statistics

Single ratios:

- WH(γγ) / ZH(γγ) ∼ κ_{WZ}
- WH(γγ) / WZ(ee) ~ κ_w
- WH(bb,cc,ττ) / WZ(bb,cc,ττ) ∼ κ_W
- ZH(bb,cc,ττ) / ZZ (bb,cc,ττ) ∼ κ_{b,cτ}
- ttH(bb,ττ) / ttZ(bb,ττ) ∼ κ_t

double-ratio: $H(bb, CC, \tau\tau)/Z(bb, CC, \tau\tau)$ ----------------------------------- ∼ κ_{b,c,τ} / κ_{μ,Z} $H(u,u, 4\ell)/Z(uu, 4\ell)$ in ggH, VH? $\mathsf{p}_\mathsf{T}(\mathsf{H})^\mathsf{min}$?

Wishlist (HH)

- Self-coupling HH
	- \circ Focus on most sensitive channels bbyy, bb $\tau\tau$
		- \blacksquare κ sensitivity vs c.o.m / luminosity / detector assumptions (being covered)
		- \bullet (κ_{λ} , κ_{t}) scan with/without input from ttH/ttZ
		- ($\kappa_{\rm V}$, $\kappa_{\rm 2V}$)sensitivity from VBF HH (4b)?
	- production mode dependent categorisation
	- \circ boosted regime to be revisited (bbbb, bb $\tau\tau$)
	- \circ bbZZ, bbWW
	- \circ yy $\tau\tau$, ...? unexplored

Plenty of space to contribute …

Wishlist (HH)

Daina Leyva (DESY), Aliya Nigamova (UHH)

The objective: improve constraints from in κ_1 - κ_1 plain with single Higgs channels

The best channel: ttH, with $H \to \gamma\gamma$ decay

Maybe taking advantage of ttH(γy)/ttZ(ee) for cancelling correlated systematics $_{39}$

HH→ \overline{b} *byy* analysis: center of mass energy scan

We produced samples for the 80,100,120 TeV scenarios as well

Mastrapasqua, Taliercio, Stapf

Recent highlights: $HH \rightarrow bbyy$

3GeV

Recent highlights: $HH \rightarrow bbWW$, bb $\tau\tau$

Scen II, syst. 2

Scen II, syst. 3

36.1 $%$

42.7%

- e.c.m /lumi/syst. variations
- combination with bbyy

 $b\overline{b}\tau_{\ell}\tau_{h}$ comparison

In practice

Overview of technical workflow

Same approach as for FCC-ee studies

• All information for FCC-hh physics & performance studies summarized [on this page](https://hep-fcc.github.io/FCChhPhysicsPerformance/)

Hadronization & fast simulation with k4SimDelphes

• The [k4SimDelphes](https://github.com/key4hep/k4SimDelphes) tool allows us to run

Pythia8 and Delphes in one step (and

Event generation

- Typically use MadGraph and Powheg for FCC-hh studies with PDF sets from LHAPDF
	- Produced with common FCC framework: [EventProducer](https://github.com/HEP-FCC/EventProducer)
-

• Database $\frac{C_{\text{FCC-nn}}}{\text{FCC-nn}}$ Gen | Les Houches Samples

Additional stats about the production can be found here.

Expand table

About

Hadronization & fast simulation with k4SimDelphes

• The [k4SimDelphes](https://github.com/key4hep/k4SimDelphes) tool allows us to run

Pythia8 and Delphes in one step

• Two current Delphes scenarios for

Hadronization & fast simulation with k4SimDelphes

e.g. bremsstrahlung for electrons, multiple scattering, resolutions in forward region

The [k4SimDelphes](https://github.com/key4hep/k4SimDelphes) tool allows us to run

Pythia8 and Delphes in one step

Two current Delphes scenarios for

FCC-hh:

- [Scenario I:](https://github.com/delphes/delphes/blob/master/cards/FCC/scenarios/FCChh_I.tcl) Idealistic scenario for ultimate precision
- [Scenario II:](https://github.com/delphes/delphes/blob/master/cards/FCC/scenarios/FCChh_II.tcl) Baseline scenario based on FCC-hh

FCCAnalyses framework

Mandatory: analyzers function to define the analysis graph, please make # sure you return the dataframe, in this example it is dframe? def analyzers(self, dframe):

```
\mathbf{r}
```

```
Analysis graph.
\sim
```
 d frame $2 = 0$ dframe

```
.Define("weight", "EventHeader.weight")
```
.Define("qamma", "FCCAnalyses::ReconstructedParticle::get(Photon_objIdx.index, ReconstructedParticles)") .Define("selpt gamma", "FCCAnalyses::ReconstructedParticle::sel pt(30.)(gamma)") . Define("sel gamma unsort", "FCCAnalyses::ReconstructedParticle::sel eta(4)(selpt gamma)") .Define("sel gamma", "AnalysisFCChh::SortParticleCollection(sel gamma unsort)") #sort by pT

. Define("ngamma", "FCCAnalyses::ReconstructedParticle::get n(sel gamma)") .Define("g1_e", "FCCAnalyses::ReconstructedParticle::get_e(sel_gamma)[0]") .Define("q1_pt", "FCCAnalyses::ReconstructedParticle::get_pt(sel_gamma)[0]") .Define("g1_eta", "FCCAnalyses::ReconstructedParticle::get_eta(sel_gamma)[0]") .Define("g1_phi", "FCCAnalyses::ReconstructedParticle::get_phi(sel_gamma)[0]") .Define("g2_e", "FCCAnalyses::ReconstructedParticle::get_e(sel_gamma)[1]") , Define("q2 pt", "FCCAnalyses::ReconstructedParticle::get pt(sel gamma)[1]") . Define("q2 eta", "FCCAnalyses::ReconstructedParticle::get eta(sel qamma)[1]") .Define("q2_phi", "FCCAnalyses::ReconstructedParticle::get_phi(sel_qamma)[1]")

- [FCCAnalyses](https://github.com/HEP-FCC/FCCAnalyses) is a common software framework to analyse EDM4hep events using ROOT's RDataframe
	- Build an "analysis graph" with very simple syntax in python code
	- C++ libraries for the complex computations
	- Examples and tutorials available [here](https://hep-fcc.github.io/FCCAnalyses/)
- Additions for FCC-hh analyses to come:
	- Using generator event weights, reading heavy flavour tagging from Delphes

Organisation

● General group: **fcc-ped-hh-espp25**

 \rightarrow main group, general monthly meetings announcements

Coordinators: *Christophe Grojean (DESY/CERN), Michelangelo Mangano, Matthew McCullough, Michele Selvaggi (CERN)*

● Physics analysis group: **fcc-ped-hh-physicsperformance-espp25**

 \rightarrow physics analysis focussed monthly meetings (will be announced soon)

Coordinators:

*Birgit Stapf (CERN)***,** *Angela Taliercio (NorthWestern)***, Sara Williams** *(Cambridge)*

Useful references

[Physics at the FCC-hh](https://e-publishing.cern.ch/index.php/CYRM/issue/view/35) CERN-2017-003-M

[FCC-hh CDR](https://cds.cern.ch/record/002651300) CERN-ACC-2018-0058

[FCC-hh Yellow Report \(extended CDR\)](https://e-publishing.cern.ch/index.php/CYRM/issue/view/154/120) CERN-2022-002

[Physics potential of a low-energy FCC-hh](https://cds.cern.ch/record/2681366?ln=en) CERN-FCC-PHYS-2019-0001

[Higgs Physics Potential of FCC-hh Standalone](https://cds.cern.ch/record/2681378?ln=en) CERN-FCC-PHYS-2019-0002

[FCC-hh Detector Requirements](https://indico.cern.ch/event/1335302/attachments/2730999/4756583/fcchh_seminar_cern.pdf) CERN Seminar

Conclusion

- high energy proton colliders are very "inclusive" facilities for physics
	- probes many different initial states, both for both EWK, colored particles
	- measurements at threshold and beyond thanks to large rates, high mass exploration
- key physics benchmarks channels studied set the requirements for detector design
	- physics reach
	- detector design and technologies, R&D
	- optimisation of the machine layout
	- reconstruction, object identification, PU removal
	- software, AI ...
- FCC-hh is an order of magnitude more complex than HL-LHC
	- main challenges identified, most likely will be overcomed given timescale
		- radiation hardness, amount of data real challenge
		- it will be the next generation hadron machine, **BUT** R&D should not stop after HL-LHC
			- synergetic with other proposed future facilities

High energy hadron machines

- Ultimate discovery machine \bullet
	- directly probe new physics up to unprecendented scale
	- discover/exclude: \bullet

\n- heavy resonances "strong"
$$
m(q^*) \approx 50 \text{ TeV}
$$
, $\approx 40 \text{ TeV}$, $\approx 15 \text{ TeV}$, $\approx 10 \text{ TeV}$
\n- SUBY $m(\text{stop}) \approx 10 \text{ TeV}$ $\approx 10 \text{ TeV}$ $m(\text{step}) \approx 10 \text{ TeV}$ $m(\text{step})$ $m(\text{step})$

• Precision machine (Higgs)

- probe Higgs self-coupling to few % level \bullet
- %-level precision for 3rd generation (top yukawa)
	- and 2nd generation $(\mu\mu, cc)$ \bullet
- exploit complementarity with e⁺e⁻ by probing high dim.operators \bullet (EFT) in extreme kinematic regimes (boosted)

Direct search vs HH

- Strong 1st order EWPT needed to explain large observed baryon asymmetry in our universe \bullet
- Can be achieved with extension of SM + singlet

Guiding principles for FCC-hh detector

- Guiding principles were machine constraints and physics requirements
- This generic detector serves as a starting point for:
	- benchmarking physics reach of the machine
	- identify: challenges of building such an experiment
	- topics where R&D needed
- Most likely, this is not "THE OPTIMAL" detector.
- Maybe the optimal route will be to have several detectors optimized for specific signatures (low? vs high lumi)
- Also, expected improvements in technology may lead to more ambitious and less-conventional approaches of detector concepts in the future
	- most of the challenges common to any high energy/high luminosity project.

Experimental challenges for jets (at threshold)

- relative impact of PU is large on:
	- jet energy resolution and scale
	- HF-tagging (b/c-tagging)
- **PU** subtraction techniques
	- charged hadron subtraction
		- **■ timing information (5-10 ps resolution)**
			- **● forward!**
	- Residual:
		- area-subtraction
		- PUPPI reconstruction
		- advanced graph based-ML

The deadcone effect for massive colored res.

FSR in soft and collinear limit :

$$
\frac{1}{\sigma} \frac{d^2 \sigma}{dz d\theta^2} \simeq \frac{\alpha_S}{\pi} C_F \frac{1}{z} \frac{\theta^2}{(\theta^2 + \theta_D^2)^2}
$$

- **●** effect can be observed at HL-LHC
- rather than treated as a nuisance can be exploited for top tagging at multi TeV energies

Maltoni, MS, Thaler [1606.03449]

for the top can be pretty large angle

Electroweak showers

3000 $2p_T(W) / H$
 0.9
 0.8 2500 WZ+j 0.7 2000 0.6 0.5 1500 0.4 1000 0.3 0.2 500 0.1 \mathbf{e} 0.5 $\mathbf{1}$ 1.5 $2 \quad 2.5 \quad 3$ 3.5 $\overline{\mathbf{4}}$ 4.5 5 $\triangle R(W,Z)$

 $2\rightarrow 2$ + PYTHIA weak FSR shower

Chen, Han and Tweedie [1611.00788]

- EWK shower become sizeable log-enhanced at multi-TeV energies
	- \circ j \rightarrow jW can fake a top jet
- can and have to be included and studied in multi-TeV jet tagging
- Neutrino showers?

59

Higgs invisible

- Measure it from $H + X$ at large $p_T(H)$
- \cdot Fit the E_Tmiss spectrum
- Estimate $Z \rightarrow VV$ from $Z \rightarrow ee/\mu\mu$ control regions
- Constrain background p_T spectrum from $Z \rightarrow VV$ to the % level using NNLO QCD/EW to relate to measured Z , W and γ spectra
- BR(H \rightarrow inv) \leq 2.5 10⁻⁴

