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“All options for a 10 TeV pCM
collider are new technologies
under development and R&D is
required before we can embark
on building a new collider”
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The physics programme of future colliders should build on 3 pillars




The physics programme of future colliders should build on 3 pillars

® [he guaranteed deliverables

® mproved measurements of fundamental constants and parameters (eg H couplings)

® deeper exploration of dynamics of SM interactions, eg
o W symmetry breaking and flavour phenomena
e QCD non-perturbative dynamics

® push further the boundary between established facts (e.q9. quarks are pointlike at the scale
of (10 TeV)-1 ) and conjectures (e.g. quarks are pointlike )
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® [he exploration and discovery potential
® higher and higher energy !

® (Conclusive answers to important questions, like

s DM a thermal WIMP 7

What was the nature of the EW phase transition ?

Does the origin of neutrino masses lie at the TeV scale ?

Are the Higgs potential and mass defined by physics at the few-TeV scale ?
are there BSM sources of CPV below the few-TeV scale ?




Physics potential of FCC-hh @ 100 TeV to complement FCC-ee in fulfilling these

goals studied over 10 years, leading to the FCC CDR (2018) and further refinements

® Physics at 100 TeV", CERN Yellow
@ FCC CDR:

® \/ol.1: Physics Opportunities (CE

® \/0l.3: The Hadron Machine (CER

Report: https://arxiv.org/abs/1710.06353

RN-ACC-2018-0056), http://cern.ch/go/Ngx7
N-ACC-2018-0058), http://cern.ch/go/Xrg6

® (Conceptual design of an experiment at the FCC-hh: https://inspirehep.net/literature/2595883
@ Low-E FCC-hh physics potential: M. Mangano, https://cds.cern.ch/record/2681366%In=en

On the HE-LHC, see also

® HL/HE-LHC Physics Workshop repo
P Azzi, et al, SM Physics at the
M. Cepeda, et al, Higgs at the -

s

- and

X. Cid-Vidal, et al, BSM at the H

A. Cerrl, et al, Flavour at the HL- anc
/. Citron,et al, Future physics opportun

- and

HL- and

HE-

_|

—-L

HC, https://cds.cern.ch/record/2650160

C, https://cds.cern.ch/record/2650162

—-LHC, https://cds.cern.ch/record/2650173
—-LHC, https://cds.cern.ch/record/2650175
ties for high-density QCD at the LHC with heavy-ion and

proton beams, https://cds.cern.ch/record/2650176

® HE-LHC FCC CDR

o [CC CDR Vol.4: (CERN-ACC-2018-0059), http://cern.ch/go/S9Ga
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Examples of key FCC-hh @ 100 deliverables

® Higgs physics
® High mass reach
® Yes/no answers






The absolutely unique power of pp *H+X:

® the extraordinary statistics that, complemented by the per-mille e*e- measurement of eg
BR(H—ZZ%), allows
® the sub-7% measurement of rarer decay modes
® the ~5% measurement of the Higgs trilinear selfcoupling

® the huge dynamic range (eg pt(H) up to several TeV), which allows to
® probe d>4 EFT operators up to scales of several TeV
® search for multi-TeV resonances decaying to H, or extensions of the Higgs sector

24 x 10°  2.1x10° 4o0x108 3.3x108 96x108 3.60x 107

1380 170 100 110 530 390
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Hierarchy of production channels changes at large pt(H):

® O(ttH) > o(gg—H) above 800 GeV
® (O(VBF) > o(gg—H) above I80(g GeV
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o (BR(H — yy) /BR(H — eeuu) ) (%)

Precision measurements of Higgs couplings with boosted Higgses

FCC-hh Simulation (Delphes)
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Normalize to BR(4l) from FCC-ee => sub-% precision for absolute couplings



Higgs couplings after FCC-ee / hh

HL-LHC FCC-ee FCC-hh
OlH / TH (%) SM 1.3 thd
OgHzz / QHzz (%) 1.5 0.17 thd
Ogrww / grww (%) 1.7 0.43 thd
OQHbb / gHbb (%0) 3.7 0.61 tbd
OgHce / QHee (%) ~70 1.21 tbd
OQgHgg / GHgg (%) 2.5 (gg->H) 1.01 tba
OgHrr / QHrr (%) 1.9 0.74 tba
O9Huu / GHup (%) 4.3 9.0 0.65 ()
OgHyy / gHyy (%) 1.8 3.9 04 ()
OgHit / gHitt (%) 3.4 ~10 (indirect) 0.95 ()
OgHzy / gHzy (%) 9.8 — 0.9 )
OgHHH / gHHH (%) 50 ~44 (indirect) 5

BRexo (95%CL) BRinv < 2.5% <1% BRinv < 0.025%

* From BR ratios wrt B(H—ZZ*) @ FCC-ee
** From pp—ttH / pp—ttZ, using B(H—bb) and ttZ EW coupling @ FCC-ee

-
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High mass reach




s=Channel resonances

FCC-hh Simulation (Delphes), Vs = 100 TeV
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SUSY reach at 100 TeV

Early phenomenology studies
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The potential for yes/no answers

to important questions

|4



WIMP DM theoretical constraints

9 —1
For particles held in equilibrium by pair creation 0O hz N 10°GeV 1
and annihilation processes, (X X < SM) DM My, (oV)
For a particle annihilating through processes 4 )
which do not involve any larger mass scales: <O' V> Sl 4 off / MDM

|5



Disappearing charged track analyses
(at ~full pileup)

K. Terashi, R. Sawada, M. Saito, and S. Asai, Search for WIMPs with disappearing
track signatures at the FCC-hh, (Oct, 2018) . https://cds.cern.ch/record/26424°74.

FCC-hh, Ys = 100 TeV, 30 ab™ FCC-hh, Ys = 100 TeV, 30 ab™
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New FCC-hh scenarios

e Driven by new accelerator layout (90.7 km ring vs 100 km, increased dipole filling factor)

17
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New FCC-hh scenarios

e Driven by new accelerator layout (90.7 km ring vs 100 km, increased dipole filling factor)
e Driven by assumptions about challenges/options in dipole technology (see L.Rossi yesterday)

e (Ongoing review of CDR physics potential projections, to assess impact of new scenarios:

o See https://indico.cern.ch/event/1439072/ and Michele’s talk after this

e (Goalis NOT to push for an alternative “planA”, but to provide expert answers to questions
that may be raised during the Strategy process, eg in the context of “plan-B” discussions

17


https://indico.cern.ch/event/1439072/

Slides from Frank Zimmermann (link), see also Frank’s note
~90 TeV according to more

aggressive scenario shown by Lucio

Assumptions & possible parameter range

With present layout of the FCC, and after  EadCRIENLY c.m. energy | Comment

dlllgent optimization (by Massimo, Gustavo, 12 72 not far above peak field of HL-
and Thys), the following energies can be LHC Nb,Sn quadrupoles
reached according to the dipole field: 14 84 Nb,Sn or HTS
17 102 HTS
20 120 HTS

Increasing the c.m. energy beyond ~100 TeV, we will assume that the synchrotron-radiation power could
not increase, beyond a total of about 4 MW (which must be removed from inside the cold magnets) sk

On the other hand, when decreasing the beam energy, one can hold either the synchrotron-radiation
power (increasing current up to HL-LHC values) or the beam current constant. Also, the pile-up might need
to be limited, e.g. to ~1000 events/crossing. We thus consider three scenarios for 12 T (0.5 Aand 1.12 A
beam current, the latter without or with pile-up levelling).

Finally, further overall lowering the synchrotron radiation power, by reducing the number of bunches, in
order to restrict the total power consumption of the future FCC-hh, would decrease peak and integrated
luminosity by the same factor.

** 30 W/m/beam => 5 MW total, released inside magnets operating at 1.9K !!
Absorption by beam screen at 50K to room T => 100MW cryo plant ...



https://indico.cern.ch/event/1439072/contributions/6106995/attachments/2917946/5125895/FCC-hh-scenarios-2024kickoff.pdf
https://indico.cern.ch/event/1439072/contributions/6106995/attachments/2917946/5120981/FCC_hh_scenarios.pdf

SiX scenarios

1) A machine based on 12 T dipoles, with a beam current of 0.5 A as considered for the
16 T FCC-hh machine (F12LL).

2) A machine based on the same 12 T technology close to deployment, but with a
higher beam current of 1.1 A, as considered for the HL-LHC (F12HL).

3) The same case as F12HL but limiting the pile up not to exceed a value of 1000
(F12PU).

4) A machine based on 14 T dipoles, and 0.5 A current (F14).

5) A machine based on High Temperature Superconductor (HTS) dipole magnets with a
field of 17 T, just exceeding 100 TeV c.m., still with 0.5 A (F17).

6) A machine also based on High Temperature Superconductor (HTS) dipole magnets
with a field of 20 T, and a beam current of 0.2 A, so that the synchrotron-radiation
power is limited to about 2 MW / beam (F20).

19
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power is limited to about 2 MW / beam (F20).
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A T T 0 N
ideal [ L dt /day fb-1 17.1 10.8 (1.9) 0.4
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1) A machine based on 12 T dipoles, with a beam current of 0.5 A as considered for the
16 T FCC-hh machine (F12LL).

2) A machine based on the same 12 T technology close to deployment, but with a
higher beam current of 1.1 A, as considered for the HL-LHC (F12HL).
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6) A machine also based on High Temperature Superconductor (HTS) dipole magnets
with a field of 20 T, and a beam current of 0.2 A, so that the synchrotron-radiation

power is limited to about 2 MW / beam (F20).
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initial L nb-1s- 39 (50, lev'd) 10
initial pile up 580 2820 055 590 2 141 (135) 27
opt. run time h 3.8 98 6.3 3.8 3.4 4.2 (18-13) ~10

A 2 T

ideal [Ldt /day  fb 17.1 10.8 (1.9) 0.4
[Ldt /year fo-1 950 2000 1300 920 920 370 240 (55)



c.m. energy

- dipole field
beam current
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T
A
1011
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MeV

KW
h

More details (see Frank’s note )
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https://indico.cern.ch/event/1439072/contributions/6106995/attachments/2917946/5120981/FCC_hh_scenarios.pdf

Preliminary assessment of 80 vs 100 vs 120 TeV
evolution of key measurements

More details in talks by MLM (slides) and M.Selvaggi’s (today’s talk and earlier slides )

Assumptions underlying the results shown below:
(1) exptl systematics and S/B independent of E -,
(2) total integrated luminosity independent of £, (30 ab~')

B [ .  evolution only driven by E -, - dependence of production cross sections
CM 4 Y LEcm > P

Note:
® Zimmermann’s table shows that (2) is too naive
B (0 be fixed in next iterations
® for Higgs measurements, potential handicap @ 120 TeV and advantage for 80 TeV
B ot necessarily so, play with higher boosts to optimize stat vs syst balance, to be studied in
ore detail



https://indico.cern.ch/event/1439072/contributions/6106996/attachments/2920417/5125909/MLM-talk.pdf
https://indico.cern.ch/event/1439072/contributions/6106999/attachments/2920406/5125885/FCC-hh%20workshop.pdf

Higgs couplings
beyond precision
reach of H factory

100 TeV CDR

Coupling precision baseline 80 TeV 120 TeV
OgHyy / QHyy (%) 0.4 0.4 0.4
OgHup / GHup (%) 0.65 0.7 0.6
OgHzy / gHzy (%) 0.9 1.0 0.8

22



Higgs couplu_ngg Coupling precision 100 TeV_CDR 80 TeV 120 TeV
beyond precision baseline
reach of H tactory SGHyy / GHyy (%) 0.4 0.4 0.4
69Hp.p_ / JHpp (o/o) 0.65 0.7 0.6
OgHzy / gHzy (%) 0.9 1.0 0.8
Higgs self-coupling Det performance/systematics scenarios ouu(80TeV) o, |
https://arxiv.org/abs/2004,03505 6 (100TeV) => reduce Ostat by 15%
. Target det performance: LHC Run 2 conditions
. Intermediate performance o(120TeV) |
ll.Conservative: extrapolated HL-LHC performance, 61(100Te V) ~ 1.3 =>increase &t by 15%
Ok %) with today’s algo’s (eg no timing, etc) HH

s || s ||| 80 TeV s | 120 TeV s | s |l s |l

stat . . . stat

syst : : : syst

tot . . 0 tot
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Higgs couplu_ngg Coupling precision 100 TeV_CDR 80 TeV 120 TeV
beyond precision baseline
reach of H tactory SGHyy / GHyy (%) 0.4 0.4 0.4
69Hp.p_ / JHpp (o/o) 0.65 0.7 0.6
OgHzy / gHzy (%) 0.9 1.0 0.8
Higgs self-coupling Det performance/systematics scenarios oun(B0TeV) ) |
https://arxiv.org/abs/2004,03505 6 (100TeV) => reduce Ostat by 15%
. Target det performance: LHC Run 2 conditions
. Intermediate performance o(120TeV) |
ll.Conservative: extrapolated HL-LHC performance, 61(100Te V) ~ 1.3 =>increase &t by 15%
Ok %) with today’s algo’s (eg no timing, etc) HH

s || s ||| 80 TeV s | 120 TeV s | s |l s |l

stat : : : stat
syst : : : syst

tot . . 0 tot

Remarks:
» Similar +/— 15% changes for Htt coupling

. Differences within the uncertainty range of detector performance. Run 2 performance keeps 0Ky well below 5%

22
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Disappearing charged track analyses (at ~full pileup)
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80 TeV study, vs 100 TeV:
*signal rates @ 80 TeV
e kinematic selection reoptimised
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= discovery reach
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o 5
50 higgsino reach drops from | 150 g
g
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* Discovery reach at the largest masses vary at the level of —20% to +15% for the 80
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exclude, either option.

= unless a specific BSM case arises, the upgrade from 80 (or 100) to 120 TeV
doesn’t lead to clear progress justifying the potential cost and refurbishment time
loss: running at 80(100) TeV longer might be wiser ...
= the decision of 80 vs 120 vs 100 is probably final, and unlikely to lead to an

upgrade path
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Essential requirements: 23800

|) total removal of current accelerator installation (magnets, QRL)

2) major infrastructure upgrade, including CE work on tunnel and ancillary
surface/tunnel facilities to host enhanced power/cryo systems

3) upgrade of injector chain (eg super-conducting SPS)

4) magnets must be ready at end of HL-LHC for industrial mass-production
5) new detectors

(pbrobably weaker demands on (2) and (3) if 12T dipoles instead of 16 => 20TeV)

Project preparation &

" administrative processes ekl
B o Anticipated stop of :
2 CE and infrastructure
CE and infrastructure design, SPS + LHC dismantling, CE work 4/
tendering preparation Infrastructure refurbishment
16 T dipole magnet 16 T dipole magnet 16 T dipole magnet 16 T dipole magnet _
short and long models prototypes preseries series production — 8)’I"S post HL-LHC to L
: . Accelerator (scSPS + HE-LHC) construction, com P I cte accele rato I‘/ | nl S
Technology R&D for accelerators and technical designs : : R
Installation, commissioning

assuming readiness of

Set up of international experiment collaborations, Detector technical design | Detegtor construction, magn et series pro duction
detector R&D and concept development Installation, commissioning
' before HL-LHC ends




Table 4.3: Higgs production event rates for selected processes at 100 TeV (V) and 27 TeV (/Vy7), and
statistical increase with respect to the statistics of the HL-LHC (N1o9/27 = 0100/27 Tev X 30/15 ab™ ",

Ny =01y X 32b7 ).

& (BR(H— vy) /BR(H — eeuy) ) (%)

gg—H VBF WH ZH (tH HH
Nigo 24 x 10° | 2.1 x 10° | 4.6 x 10° | 3.3 x 10° | 9.6 x 10° | 3.6 x 10"
Nigo/Nys | 180 170 100 110 530 390
N,y 22x10° | 1.8x10° | 5.1x 10" | 3.7x 10" | 4.4x 10" | 2.1 x 10°
Noy /Ny 16 15 11 12 24 19
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High-mass reach

HE-LHC Simulation (Delphes), \s = 27 TeV

0

2

4

5 c Disci:overyé
1 ab’? '

6

8

10

12 14 16
Mass scale [TeV]

5/6B

WIMP DM reach

B 14 TeV, 3 ab™?
27 TeV, 15 ab™?
100 TeV, 30 abt -

—— 20% bkg.
——- 500% bkg.

0 1000 2000 3000 4000 5000 6000 7000
Wino Mass my [GeV]

Figure 3: Sensitivity reach for wino-like DM
WIMP candidates.

=> |loss of yes/no answer to
WIMP DM scenarios



HE-LHC

FCC-ee

2018 costs as documented in the FCC CDR

Domain Cost in MCHF
Collider 5,000
Injector complex 1,100
Technical infrastructure 800
Civil Engineering 300
TOTAL cost 7,200
Domain Cost [MCHF]
Collider and injector complex 3,100
Technical infrastructure 2,000
Civil Engineering 5,400
TOTAL cost 10,500

assumes 2.3 MCHF/dipole ~2.9 BCHF

/
\

(cfr ~ | MCHF/ LHC dipole)

includes SC SPS

NB: FCC-ee new estimate (2024) ~13B.
No update available for HE-LHC

NB: If no 90km tunnel built, HE-LHC to be
compared with LEP3 for prioritization:

a different talk. ..




The low-E FCC “plan-B” option,

for a fast-track “cheaper” FCC-hh
(results for LHC dipoles in a |00km tunnel => 37.5 TeV)



Low-E FCC-hh physics reach

OR/R HE-LHC | LE-FCC | FCC-hh
e¢ »H VBF WH 2ZH uwH HH R = B(H—yy)/B(H— 2e2y) 1.7% 1.5% 0.8%
6c(375TeV) (pb) | 230 19 5 3 58 0.26 R = B(H—pp)/B(H—4y) 3.6% 2.9% 1.3%
27/14 2. 2.7 23 24 48 38 R = B(H—)[.LpY)/B(H—)[.Lp) 8.4% 6% 1.8%
(Grsma | 42 4435 55 95 70)) e0xiic | R-BHoyyBHo2w | 35% | 28% | 14%
100/14 15 16 10 15 53 34
100/37.5 36 36 30 37 56 4.9 e Minor improvement HE-LHC => LE-FCC
e In the region above pt~100 GeV, LE-FCC stat limited for

rare decays, while FCC is still syst-dominated (=> room for
improvement of asymptotic precision)



Low-E FCC-hh physics reach

9¢ »H VBF WH ZH u«H HH
0(37.5TeV) (pb) | 230 19 5 3 58 026
27/14 2.7 27 23 24 48 38
37.5/14 4.2 44 33 35 95 7.0
100/14 15 16 10 13 53 34
37.5/27 1.6 16 15 15 20 18
100/37.5 3.6 36 3.0 37 56 49

Example: s-channel resonances

4-10 x LHC

50% - 2 x HE-LHC

OR/R HE-LHC | LE-FCC | FCC-hh
R = B(H—=vyy)/B(H— 2e2u) 1.7% 1.5% 0.8%
R = B(H—pp)/B(H—4u) 3.6% 2.9% 1.3%
R = B(H—ppy)/B(H—=pp) 8.4% 6% 1.8%
R =BH—yy)B(H— 2u) 3.5 % 2.8% 1.4%

Collider Zeoyy> T T Zea—tt Grs22WW  Zon. ot Q' 2jj Zeg >4
FCC [4] (TeV) 18 18 22 23 40 43
HE-LHC [4] (TeV) 6 6 7 8 12 13
FCC/HE-LHC 3 3 3.1 2.9 3.3 3.3
FCC/HE CR e P2 2.9 2.9 3.1 3.2
LE-FCC CR (TeV) 7.5 7.5 9 10 16 17
LE-FCC/HE-LHC 1.25 1.25 1.3 1.25 1.3 1.3

e Minor improvement HE-LHC => LE-FCC
e In the region above pt~100 GeV, LE-FCC stat limited for

rare decays, while FCC is still syst-dominated (=> room for

improvement of asymptotic precision)

¢ Mmax(37.5) ~ 0.35 Mmax(1 00)
® Mmax(37.5) ~ 1.25 Mmax(27)




Low-E FCC-hh physics reach

gg—H VBF WH ZH tttH HH

o(37.5 TeV) (pb) 230 19 5 3 5.8 0.26

27/14 2.0 2.7 23 24 48 38

37.5/14 4.2 44 33 35 95 7.0 4-10 x LHC

100/14 15 16 10 15 34

St s 1.6 1.6 1.5 1.5 2.0 1.8 50% - 2 x HE-LHC

100/37.5 3.6 3.6 30 37 56 49
Example: s-channel resonances
Collider Zeoyy> T T Zea—tt Grs22WW  Zon. ot Q' 2jj Zeg >4
FCC [4] (TeV) 18 18 22 23 40 43
HE-LHC [4] (TeV) 6 6 7 8 12 13
FCC/HE-LHC 3 3 3.1 2.9 % 5.3
FCC/HE CR P 2.7 2.9 2.9 3.1 X, 360
LE-FCC CR (TeV) 7.5 7.5 9 10 16 17
LE-FCC/HE-LHC 1.25 1.25 1.3 1.25 1.3 1.3

Table 3. 56 discovery reach for WIMP DM particles at HL-LHC, HE-LHC and FCC-hh [7]. Columns 4 and 5 present the CR

extrapolations from HL-LHC to HE-LHC, and from HE-LHC to FCC, respectively. Column 6 gives the extrapolation from HE-LHC to

LE-FCC, augmented by a factor 1.3, as discussed in the text.

M(GeV) | HL-LHC HE-LHC} FCC

HE-LHC (CR) FCC (CR) ,LE-FCC (1.3xCR)

wino 550
higgsino 200

1500
450

4500
1250

1100 3500 »
420 950 .

2300
650

OR/R HE-LHC | LE-FCC | FCC-hh
R = B(H—=vyy)/B(H— 2e2u) 1.7% 1.5% 0.8%
R = B(H—pp)/B(H—4u) 3.6% 2.9% 1.3%
R = B(H—ppy)/B(H—=pp) 8.4% 6% 1.8%
R =BH—yy)B(H— 2u) 3.5 % 2.8% 1.4%

e Minor improvement HE-LHC => LE-FCC
e In the region above pt~100 GeV, LE-FCC stat limited for

rare decays, while FCC is still syst-dominated (=> room for
improvement of asymptotic precision)

¢ Mmax(37.5) ~ 0.35 Mmax(1 00)
® Mmax(37.5) ~ 1.25 Mmax(27)

LE-FCC comes short of the upper mass limits for
a wino (higgsino) WIMP, namely 3 TeV (1 TeV)



from M. Benedikt (2019 cost projection, tunnel construction excluded)

Cost scaling FCC-hh to FCC-NbTi-6T

Main cost items concerned are magnets and cryogenics:

- Magnet system:
- Complete magnet system 3.5 BCHF (about 75% main dipoles, i.e. 2.8 BCHF and 25% for quads, inserations, all other magnets 0.7
BCHF (“best estimate that can be done” dixit MSC group leader)

- Corresponding cost per main dipole of 2800/4500 = 620 kCHF
- This it the “best estimate that can be done” dixit MSC group leader

- Cryogenics system:

New estimate done, based on FCC-hh type beam-screen and temperature layout and 1.9 K operation temperature
- 1.4 BCHF (this is a factor 2.6 wrt LHC cryosystem), compared to 2.5 BCHF for FCC-hh.

- Further revised estimates and assumed scalings and associated cost:

- Vacuum system 480 to 410 MCHF (smaller and round cooling tubes, no SR absorbers in inter connects)
- Cooling system 490 to 420 MCHF (reduced number of cooling towers)

- 25% reduction of beam transfer, power converters/cabling, collimation, dump systems = 825 MCHF (instead of 1.1 BCHF)
- 20% reduction of EL infrastructure cost = 560 MCHF (instead of 700 MCHF)

- Other accelerator, injector and infrastructure systems unchanged.

- Total cost with above assumptions 14.9 BCHF. = “Realistic” goal is perhapgd 14.5 — 15 BCHF.

cfr 2018 cost of FCC-hh after FCC-ee is built: |7 B CHF
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