TMD factorisation (a phenomenological introduction)

giuseppe bozzi University and INFN, Cagliari

Collinear PDF (FF)

Collinear PDF

f(x) depend on: x =longitudinal-momentum fraction

1-dim imaging

TMD PDF (FF)

⊥ momentum

partons

k

Transverse Momentum Dependent PDF $F(x, k_{\perp})$ depend on: x =longitudinal-momentum fraction $k_1 = (intrinsic)$ transverse-momentum

3-dim imaging

Factorising processes

Processes for which TMD factorisation has been **proven**:

Drell-Yan

 e^+e^- annihilation

 $PP \longrightarrow \ell^{\pm} \ell^{\mp} X$

- Two TMD PDFs
- Lots of data:

Olow-energy: FNAL

mid-energy: RHIC

high-energy: Tevatron, LHC

 $P\ell^{\pm} \longrightarrow \ell^{\pm}h X$

- One TMD **PDF** one **FF**
- many precise data points:

 - COMPASS at CERN

- HERMES at DESY

- Two TMD FFs
- DIA process from:
 - BELLE at KEK
 - BABAR at SLAC

TMD factorisation for DY

TMD factorisation

TMD factorisation introduces two independent artificial scales:

- the **renormalisation scale** μ , originating from UV renormalisation
- the **rapidity scale** ζ , originating from the cancellation of rapidity divergencies between collinear and soft emissions

The respective **evolution equations** are:

$$\frac{\partial \ln F}{\partial \ln \sqrt{\zeta}} = K(\mu) \quad \text{with:} \quad \frac{\partial K}{\partial \ln \mu} = -\gamma_K(\alpha_s(\mu))$$
$$\frac{\partial \ln F}{\partial \ln \mu} = \gamma_F(\alpha_s(\mu)) - \gamma_K(\alpha_s(\mu)) \ln \frac{\sqrt{\zeta}}{\mu}$$

TMD structure

$$F_{f/P}(x, \mathbf{b}_T; \mu, \zeta) = \sum_j C_{f/j}(x, b_*; \mu_b, \zeta_F) \otimes f_{j/P}(x, \mu_b) : A$$

$$\times \exp\left\{K(b_*;\mu_b)\ln\frac{\sqrt{\zeta_F}}{\mu_b} + \int_{\mu_b}^{\mu}\frac{d\mu'}{\mu'}\left[\gamma_F - \gamma_K\ln\frac{\sqrt{\zeta_F}}{\mu'}\right]\right\} : B$$

$$\times \exp\left\{g_{j/P}(x, b_T) + g_K(b_T) \ln \frac{\sqrt{\zeta_F}}{\sqrt{\zeta_{F,0}}}\right\} : C$$

TMD structure

$$F_{f/P}(x, \mathbf{b}_T; \mu, \zeta) = \sum_j C_{f/j}(x, b_*; \mu_b, \zeta_F) \otimes f_{j/P}(x, \mu_b) : A$$

$$\times \exp\left\{K(b_*;\mu_b)\ln\frac{\sqrt{\zeta_F}}{\mu_b} + \int_{\mu_b}^{\mu}\frac{d\mu'}{\mu'}\left[\gamma_F - \gamma_K\ln\frac{\sqrt{\zeta_F}}{\mu'}\right]\right\} : B$$

$$\times \exp\left\{g_{j/P}(x, b_T) + g_K(b_T) \ln \frac{\sqrt{\zeta_F}}{\sqrt{\zeta_{F,0}}}\right\} \qquad : C$$

- matching to collinear PDF at $b_T \ll 1/\Lambda_{QCD}$
- perturbative

TMD structure

$$F_{f/P}(x, \mathbf{b}_T; \mu, \zeta) = \left\{ \sum_j C_{f/j}(x, b_*; \mu_b, \zeta_F) \otimes f_{j/P}(x, \mu_b) \right\} : A$$

$$\times \left\{ \exp\left\{ K(b_*; \mu_b) \ln \frac{\sqrt{\zeta_F}}{\mu_b} + \int_{\mu_b}^{\mu} \frac{d\mu'}{\mu'} \left[\gamma_F - \gamma_K \ln \frac{\sqrt{\zeta_F}}{\mu'} \right] \right\} : B$$

$$\left\{ e^{-\frac{1}{2} \left\{ (\mu_b, \mu_b) + \frac{\sqrt{\zeta_F}}{\mu_b} \right\}} \right\}$$

$$\times \exp\left\{g_{j/P}(x,b_T) + g_K(b_T)\ln\frac{\sqrt{\zeta_F}}{\sqrt{\zeta_{F,0}}}\right\} : C$$

- matching to collinear PDF at $b_T \ll 1/\Lambda_{QCD}$
- operturbative

• CS and RGE evolution to large $b_{\rm T}$

perturbative

Accuracy	H and C	$K ext{ and } \gamma_F$	γ_K	PDF and α_s evolution
LL	0	_	1	_
NLL	0	1	2	LO
NLL'	1	1	2	NLO
NNLL	1	2	3	NLO
NNLL'	2	2	3	NNLO
N ³ LL	2	3	4	NNLO

NLL
$$C^0 \qquad \alpha_S^n \ln^{2n} \left(\frac{Q^2}{\mu_b^2}\right), \quad \alpha_S^n \ln^{2n-1} \left(\frac{Q^2}{\mu_b^2}\right)$$

NLL' $\left(C^0 + \alpha_S C^1\right) \quad \alpha_S^n \ln^{2n} \left(\frac{Q^2}{\mu_b^2}\right), \quad \alpha_S^n \ln^{2n-1} \left(\frac{Q^2}{\mu_b^2}\right)$

same logarithmic accuracy (difference = NNLL)

$$\mathbf{TMD structure}$$

$$F_{f/P}(x, \mathbf{b}_T; \mu, \zeta) = \underbrace{\sum_j C_{f/j}(x, b_{\overline{x}}; \mu_b, \zeta_F)}_{j} \otimes f_{j/P}(x, \mu_b) \qquad :A$$

$$\times \exp\left\{K(b_{\overline{x}}; \mu_b) \ln \frac{\sqrt{\zeta_F}}{\mu_b} + \int_{\mu_b}^{\mu} \frac{d\mu'}{\mu'} \left[\gamma_F - \gamma_K \ln \frac{\sqrt{\zeta_F}}{\mu'}\right]\right\} \qquad :B$$

$$\times \exp\left\{g_{j/P}(x, b_T) + g_K(b_T) \ln \frac{\sqrt{\zeta_F}}{\sqrt{\zeta_{F,0}}}\right\} \qquad :C$$
• matching to collinear PDF at $b_T \ll 1/\Lambda_{QCD}$

$$(\mu_b = 2e^{-\gamma_E}/b_*)$$

CS and RGE evolution to large b_T
perturbative

• b_* prescription to avoid Landau pole

perturbative

 \bigcirc

Non-perturbative: b* and f_{NP}

$$\mathbf{TMD structure}$$

$$F_{f/P}(x, \mathbf{b}_T; \mu, \zeta) = \underbrace{\sum_j C_{f/j}(x, \mathbf{b}; \mu_b, \zeta_F)}_{j} \otimes f_{j/P}(x, \mu_b) \qquad : A$$

$$\times \exp\left\{K(\mathbf{b}; \mu_b) \ln \frac{\sqrt{\zeta_F}}{\mu_b} + \int_{\mu_b}^{\mu} \frac{d\mu'}{\mu'} \left[\gamma_F - \gamma_K \ln \frac{\sqrt{\zeta_F}}{\mu'}\right]\right\} \qquad : B$$

$$\times \exp\left\{g_{j/P}(x, b_T) + g_K(b_T) \ln \frac{\sqrt{\zeta_F}}{\sqrt{\zeta_{F,0}}}\right\} \qquad f_{NP} \qquad : C$$

$$\bullet \text{ matching to collinear PDF at } b_T \ll 1/\Lambda_{QCD} \qquad (\mu_b = 2e^{-\gamma_E}/b_*)$$

$$\bullet \text{ perturbative}$$

12

• b_* prescription to avoid Landau pole

*f*_{NP} "parametrises" the **non- perturbative** transverse modes

fit $f_{\rm NP}$ to data

0

Non-perturbative: b* and f_{NP}

- ▶ NP is <u>unavoidable</u>: intrinsically tied to regularisation procedure
- There is not a universal form factor:
 - depends on details of b* and collinear PDFs
 - requires definition of a functional form
 - determined through a fit to experimental data

The extraction of TMD PDFs and FFs from low-pT data

SIDIS data sets

Experiment	$N_{\rm dat}$	Observable	Channels	$Q \; [\text{GeV}]$	x	z	Phase space cuts
HERMES	344	$M(x, z, \mathbf{P}_{hT} , Q)$	$\begin{array}{c} p \rightarrow \pi^+ \\ p \rightarrow \pi^- \\ p \rightarrow K^+ \\ p \rightarrow K^- \\ d \rightarrow \pi^+ \\ d \rightarrow \pi^- \\ d \rightarrow K^+ \\ d \rightarrow K^- \end{array}$	1 - $\sqrt{15}$	0.023 < x < 0.6 (6 bins)	0.1 < z < 1.1 (8 bins)	$W^2 > 10 \ { m GeV}^2$ 0.1 < y < 0.85
COMPASS	1203	$M(x,z,\boldsymbol{P}_{hT}^2,Q)$	$d \rightarrow h^+$ $d \rightarrow h^-$	1 - 9 (5 bins)	0.003 < x < 0.4 (8 bins)	0.2 < z < 0.8 (4 bins)	$\begin{array}{l} W^2 > 25 \ {\rm GeV^2} \\ 0.1 < y < 0.9 \end{array}$
Total	1547						

cut at

 $Q > 1.4 \,\,{\rm GeV}$ (coll. factorisation)

0.2 < z < 0.7(no exclusive processes)

 $P_{hT}|_{max} = min[min[0.2Q, 0.5zQ] + 0.3 \text{ GeV}, zQ]$ $(q_T/Q < 0.2)$

TMD global fits

	Accuracy	HERMES	COMPASS	DY fixed target	DY collider	N. of points	χ_2/N
Pavia 2017 <u>arXiv:1703.10157</u>	NLL	~	~	~	~	8059	1.55
SV 2019 <u>arXiv:1912.06532</u>	N3LL-	~	~	~	~	1039	1.06
MAP 2022 arXiv:2206.07598	N3LL-	~	~	~	~	2031	1.06
MAP 2024 arXiv:2405.13833	N3LL	~	~	~	~	2031	1.08

Global extractions: quick facts

Functional forms

HERMES

Fit quality: Drell-Yan

E288

CMS

0.030

 $\begin{array}{c} 0.025 \\ 1.05 \\ 1.00 \\ 0.95 \end{array}$

T

 $\mathbf{2}$

0

 $\mathbf{10}$

12

8

6

 $\mathbf{4}$

TMD PDFs

Collins-Soper kernel

Perturbative convergence

Order	NLL'	NNLL	NNLL'	N ³ LL
χ^2 /d.o.f.	3.19	1.62	1.07	1.02

(PV19) JHEP 07 (2020) 117

Importance of x-dependence

Test: <u>*x*-independent</u> fit at N³LL with Davies, Webber, Stirling (1985) NP parameterisation:

$$f_{\mathrm{NP}}^{\mathrm{DWS}}(b_T, \zeta) = \exp\left[-rac{1}{2}\left(g_1 + g_2 \ln\left(rac{\zeta}{2Q_0^2}
ight)
ight)b_T^2
ight]$$

with and without ATLAS data

	Full dataset	No y -differential data
Global $\chi^2/N_{\rm dat}$	1.339	0.895
g_1	0.304	0.207
g_2	0.028	0.093

• χ^2 significantly higher for full dataset (1.339 vs. 1.020)

* *x*-dependence required to describe data

• χ^2 <u>significantly lower</u> without ATLAS data

 \Rightarrow *x*-dependence at N³LL driven by ATLAS data

(PV19) JHEP 07 (2020) 117

Relevance of f_{NP} **at high Q**

• N³LL fit to DY data only with $f_{NP} = 1$ or MAP 22

• different values of $[q_T/Q]_{min}$

Future: matching with F.O.

Matching between TMD and collinear factorisations:

Well-understood procedure at the LHC energies where usually $Q \gg \Lambda_{\text{QCD}}$:

- clear separation of TMD and collinear, non-perturbative confined to very low q_{T} .
- Not so much so for current (and future) SIDIS data due to smaller Q:
 - need to *identify* and *study* the transition region.

Future: Exp. Measurements

- TMD factorisation applies for $q_T \ll Q$:
 - the region $q_T \simeq \Lambda_{\text{QCD}}$ is relevant for hadron structure, no matter how large Q_r .
 - As Q increases the cross section drops and low q_T becomes hard to access.

Future: Exp. Measurements

$$\phi_{\eta}^{*} = \tan\left(\frac{\pi - \Delta\phi_{\ell}}{2}\right) \sqrt{1 - \tanh^{2}\left(\frac{\Delta\eta_{\ell}}{2}\right)} \quad \text{[Banfi et al., 1009.1580]}$$

Small ϕ^* is mapped onto small q_T , this observable is expected to carry important information on hadron structure.

Future: W mass measurements

- $p_{Tl} \leftarrow q_{TW} \leftarrow \text{resummation} + \text{intrinsic} k_T$
- All analyses assume flavour-independence
- <u>impact of flavour-dependent intrinsic-*k_T* comparable to PDF variations</u>

