Parton shower accuracy (NLL and beyond)

**Daniel Reichelt, 2 October 2024** 







- Event simulation factorised into
  - Hard Process
  - Parton Shower
  - PDF/Underlying event
  - Hadronisation
  - QED radiation
  - Hadron Decays





- Event simulation factorised into
  - Hard Process

• Parton Shower

- Underlying event
- Hadronisation
- Hadron Decays



### This Talk:

- Well established tools, used for decades to model collider physics
- Also connection to fixed order via matching/merging techniques well established, at least up to NLO
- But: basic shower picture based on leading-log approximation, some simple adjustments to get "at least most of" NLL







• "probability" for soft gluon emission above v



# Parton branchings

- In toy case of constant probability for one emission between two scales  $P = \int_{t}^{t_0} dt' \lambda = \lambda \Delta t$
- "No emission" probability given by unitarity
  - $\Delta(t_0, t_c) = \exp[-\lambda \Delta t]$
- Poisson-type distribution familiar from radioactive decay
- $\bullet$

In reality not constant (see last slide), but Monte-Carlo methods available to generate emissions to corresponding "no-emission" factor (Veto-algorithm)



# Missing ingredients for real (NLL) showers

- Precise choice of scale "ordering" va ordered showers
- More accurate shower kernels
  - match to collinear part of Altarelli-Parisi splitting kernels
  - include CMW scheme (maybe not the Pythia default, but no conceptual question)
  - including additional effects on color, spin, generic higher order splitting kernels
- prescription to construct n + 1 parton final state (aka recoil scheme)

• Precise choice of scale "ordering" variable  $t \rightarrow I$  will mostly talk about  $t \sim k_t^2$ 

## Parton showers - Cliff notes version

- no-emission probability (sudakov factor)
- Main ingredients to a shower:
  - 1. splitting kernels P(z) captures soft and collinear limits of matrix elements
  - 2. fill phase space ordered in evolution variable ( $k_t$ ,  $\theta$ ,  $q^2$ , ...)  $\Rightarrow$  here  $k_t$  ordered shower
  - 3. generate new final state after emission according to recoil scheme





- Event simulation factorised into
  - Hard Process

• Parton Shower

- Underlying event
- Hadronisation
  - See also large amount of effort dedicated to colour accuracy specifically, e.g. [Forshaw, Holguin, Plätzer '19, '20, '21], [De Angelis, Forshaw, Plätzer '20], [Nagy, Soper '19]



- What I will not (so much) talk about:
- Issues with colour assignment:
  - inherited from mismatch between PS evolution and resummed observable (different identification of "hardest" emission) [Dasgupta, Dreyer, Hamilton, Monni, Salam '18], [Hamilton, Medves, Salam, Scyboz, Soyez '20]
  - for rest of the talk: assume suppression of effect with  $N_c$  is sufficient (whether you agree or not, we only have 30 min)







- Event simulation factorised into
  - Hard Process

• Parton Shower

- Underlying event
- Hadronisation
- Hadron Decays



- What I will not (so much) talk about:
- Spin correlations:
  - effective solution known in principle ([Collins]) '88], [Knowles '88,'90]), with application to angular-ordered and dipole showers [Richardson, Webster '18]
  - see PanScales studies on implications for resummation properties for specific observables [Karlberg, Salam, Scyboz, Verheyen '21], [Hamilton, Karlberg, Salam, Scyboz, Verheyen '21]







- Event simulation factorised into
  - Hard Process

• Parton Shower

- Underlying event
- Hadronisation
- Hadron Decays



- What I will not (so much) talk about:
- Fixed-order inputs:
  - See Emanuelle Re's talk yesterday about **NNLOPS** methods
  - interplay with log accuracy issues in some points, in particular if NLO emission is performed separately a la Powheg-Box [Hamilton, Karlberg, Salam, Scyboz, Verheyen '21]





11

- Event simulation factorised into
  - Hard Process

• Parton Shower

- Underlying event
- Hadronisation
- Hadron Decays



- What I will (try to) talk about:
- NLL accurate parton showers
  - PanScales studies on recoil schemes and solutions
  - Pheno with NLL parton showers

Towards NNLL





### Treatment of multiple emissions e.g. in CAESAR

- factorisation of matrix elements in soft collinear limit well known (see last slide)
- how to extract NLL observable independent (i.e. without additional information)?
- method from [Banfi, Salam, Zanderighi '05]: need explicit implementation of soft-collinear limit\*:

$$k_{t}^{\rho} = k_{t}\rho \qquad \xi = \frac{\eta}{\eta_{\text{max}}}$$

$$\eta^{\rho} = \eta - \xi \ln \rho \qquad \Rightarrow \text{numerically}$$
and assume 
$$V(k_{i}^{\rho}) = \rho V(k_{i}) \qquad \Rightarrow \text{numerically}$$
integrals in this limit



# Effect of recoil on accuracy

- question: do recoil effects indeed vanish in soft limit (i.e.  $\rho \rightarrow 0$ )?\* [Dasgupta,Dreyer,Hamilton,Monni,Salam '18]
- consider situation where we first emit  $\tilde{p}_{ij}$  from  $p_a$ ,  $p_b$ , then emit  $p_j$ ,  $\tilde{p}_{ij} \rightarrow p_i$ ,  $p_j$
- transverse momentum of p<sub>i</sub> will be
  k<sup>i</sup><sub>t</sub> ~ k<sup>ij</sup><sub>t</sub> + k<sup>j</sup><sub>t</sub> → k<sup>ij</sup><sub>t</sub> as  $\frac{k^{j}_{t}}{k^{i}_{t}} \to 0$ but, relevant limit is  $\frac{\Delta k^{i}_{t}}{k^{i}_{t}} \to \frac{\rho k^{j}_{t}}{\rho k^{i}_{t}}$ :







### **New Parton Showers - NLL accuracy** typical claim based on accuracy of splitting

- functions etc.
  - parton showers  $\sim$  NLL accurate if CMW scheme for strong coupling is used
- observation in [Dasgupta, Dreyer, Hamilton, Monni, Salam '18] [Dasgupta, Dreyer, Hamilton, Monni, Salam '20] (PanScales) collaboration):
  - subtleties arise in distribution of recoil for subsequent emissions  $\Rightarrow$  phase space where accuracy is spoiled if soft gluon absorbs recoil
  - apparently restricts  $k_t$  ordered showers to global recoil schemes









# **New Parton Showers - NLL accuracy**

- Several solutions/re-evaluations of parton shower concepts:
- [Dasgupta, Dreyer, Hamilton, Monni, Salam, Soyez '20], [vanBeekveld, Ferrario Ravasio, Hamilton, Salam, Soto-Ontoso, Soyez '22] ...
  - partitioning of splitting functions and appropriate choice of evolution variable can lead to NLL accurate shower for local and global recoil strategies
- [Forshaw, Holguin, Plätzer '20]
  - Connections between angular ordered and dipole showers
- [Nagy, Soper '11]
- local transverse, global longitudinal recoil [Herren, Höche, Krauss, DR, Schönherr,'22], [Höche, Asse '23], [Höche, Krauss, DR '24]
  - global recoil, enables analytic comparison to resummation and proof of NLL accuracy
- [Preuss '24]
  - global recoil in antenna shower Vinca







 Conclusion from **PanScales studies:** NNLL needed to describe even simple observables

Achieved by multiplicative matching of NLO • splitting kernels via + correction terms capturing effect of inclusive gluon

Differential 2-jet rate with Durham algorithm (91.2 GeV)  $d\sigma/dy_{23}$  $10^2$ 10 → Data ----- NLO  $1/4 t \le \mu_R^2 \le 4 t$ ---- LO  $\implies 1/4 t \le \mu_R^2 \le 4 t$ Data  $10^{-3}$  $10^{-2}$  $10^{-4}$ [Höche, Prestel '17]

Appears to be in contrast with small effects **found so far in implementing higher order** splitting functions (though not in complete NNLL framework yet) [Höche, Prestel '17], [Dulat, Höche, Prestel '18], [Gellersen, Höche, Prestel]





19

# **Beyond logarithmic accuracy**

- Observations
- LL and NLL accurate showers can be very similar (e.g. failing of NLL accuracy numerieally undetectable for Dire in Analytic NLL  $\rightarrow 0$  prominent observations like Thartast)  $\rightarrow 0$ unitary Shower  $\epsilon = 0.001$  $z(1-z) > k_T^2/Q^2$ ,  $\eta > 0$ v from 4-momenta NLL-accurate showers can difference momenta soft  $k_T \& z$  definition soft  $k_T \& z$ significantly from NLL result away from -strict limit. •  $\Rightarrow$  subleading effect play a significant role in phenomenological successful parton showers, more systematic understanding desirable, see also [Höche, Siegert, DR '17]





# **Alaric beyond NLL - subleading effects**

### assume Sudakov decompose like

$$p_i^{\mu} = z_i \hat{p}_{ij}^{\mu} + \frac{-k_t^2}{z_i 2p_{ij}\bar{n}} \,\bar{n}^{\mu} + k_t^{\mu} ,$$
$$p_j^{\mu} = z_j \hat{p}_{ij}^{\mu} + \frac{-k_t^2}{z_j 2p_{ij}\bar{n}} \,\bar{n}^{\mu} - k_t^{\mu}$$

actual shower kinematics:  $p_i = z \, \tilde{p}_i ,$   $p_j = (1-z) \, \tilde{p}_i + v (\tilde{K} - (1-z+2\kappa) \, \tilde{p}_i) - k_\perp ,$   $K = \tilde{K} - v (\tilde{K} - (1-z+2\kappa) \, \tilde{p}_i) + k_\perp ,$   $p_i = \frac{z}{1 - v(1-z+\kappa)} \, \hat{p}_{ij} + \frac{z}{1 - v(1-z+\kappa)} \, k_\perp$  $p_j = \frac{(1-z)(1-v) - v\kappa}{1 - v(1-z+\kappa)} \, \hat{p}_{ij} - \frac{z}{1 - v(1-z+\kappa)}$ 





![](_page_22_Figure_0.jpeg)

![](_page_22_Figure_1.jpeg)

![](_page_22_Picture_2.jpeg)

## Conclusion

- calculations)
- Effect on "general-purpose" nature to be seen
  - reminder to Paolo Nason's talk yesterday,
- Outlook:
  - time scale of future collider)

Progress on logarithmic accuracy of parton showers (as compared to resummed)

" 'best' theory framework [has] not always [been] successful in SMC land "

Probably NNLL PS matched with NNLO fixed order in near future (at least on

Non-perturbative corrections/soft physics effect might become limiting factors

![](_page_23_Picture_13.jpeg)