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Colliders for theorists

e Event simulation factorised into
e Hard Process

e Parton Shower

 PDF/Underlying event

e Hadronisation

 Hadron Decays




Colliders for theorists

= This Talk:

)  Well established tools, used for decades to

¢« Parton Shower ) model collider physics

 Also connection to fixed order via
matching/merging techniques well
established, at least up to NLO

 But: basic shower picture based on
leading-log approximation, some simple
adjustments to get “at least most of” NLL



Factorisation and Logarithms

e QCD matrix elements factorise in the soft limit

1 ’ 94 :
as (‘Eikonal’) do. .. =do. ® dP S T PrPi
n+1 n +1 N ki
T (Pra)(Piq)
& more collinear N/
_ ¥ particles DD, 2
single emission (Pd)(Piq) |
longitudinal momentum phase space

conservation: 7 < Ink,/Q rapidity

softer
particles

» calculate cross section, cut on V(k,,n) = k/Q > v

O dk Ink/Q a,
—>—J' J dn ~ —1In? l/v——L2
27 )0 ki 2r 2r

“probability” for soft gluon emission above v 5

constraint V(® , k,n) < v



Parton branchings

* |n toy case of constant probability for one emission between two scales

o
P = J dt'A = AAt

[

C

 “No emission” probability given by unitarity
o« A(Zy,t.) = exp[—AAf]
* Poisson-type distribution familiar from radioactive decay

* |n reality not constant (see last slide), but Monte-Carlo methods available to
generate emissions to corresponding "no-emission” factor (Veto-algorithm)



Missing ingredients for real (NLL) showers

» Precise choice of scale “ordering” variable ¢ — | will mostly talk about 7 ~ kt2
ordered showers

 More accurate shower kernels
 match to collinear part of Altarelli-Parisi splitting kernels

* include CMW scheme (maybe not the Pythia default, but no conceptual
question)

* including additional effects on color, spin, generic higher order splitting
kernels

e prescription to construct n + 1 parton final state (aka recoil scheme)



Parton showers - Cliff notes version

* no-emission probability (sudakov factor) i dk, o
~ CXP | — TdZZ_P(Z)
/ T

[

 Main ingredients to a shower:

& more collinear
¥ particles

1. splitting kernels P(z) captures soft and
collinear limits of matrix elements

longitudinal momentum

2. fill phase space ordered in evolution conservation: 1 < Ink/Q

variable (k,, 0, qz, ...) = here k, ordered
shower

softer
particles

3. generate new final state after emission
according to recolil scheme



Colliders for theorists

~ What | will not (so much) talk about:

* |ssues with colour assignment:

, . )

(_ « Parton Shower

* inherited from mismatch between PS
evolution and resummed observable
(different identification of “hardest”

S 1RO A1ISIS 11101 0 N emission) [Dasgupta,Dreyer,Hamilton,Monni,Salam
» See also large amount | 18], [Hamilton, Medves, Salam, Scyboz, Soyez *20]

| of effort dedicated to |
colour accuracy

specifically, e.g. [Forshaw,
Holguin, Platzer *19,’20,’21], [De |
| Angelis, Forshaw, Platzer '20], |
| [Nagy, Soper ’19]

e for rest of the talk: assume suppression of
effect with V. is sufficient (whether you

agree or not, we only have 30 min)



Colliders for theorists

~ What | will not (so much) talk about:

e Spin correlations:

e Parton Shower )

o effective solution known in principle ([Collins
'88], [Knowles '88,790]), with application to

angular-ordered and dipole showers
[Richardson, Webster ’18]

* see PanScales studies on implications for
resummation properties for specific

observables [Karlberg, Salam, Scyboz, Verheyen

'21], [Hamilton, Karlberg, Salam, Scyboz, Verheyen 21]
10



Colliders for theorists

~ What | will not (so much) talk about:

* Fixed-order inputs:

, .

» Parton Shower

 See Emanuelle Re’s talk yesterday about
NNLOPS methods

 Interplay with log accuracy issues in some
points, in particular if NLO emission is

performed separately a la Powheg-Box
[Hamilton, Karlberg, Salam, Scyboz, Verheyen '21]
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Colliders for theorists

( « Parton Shower

~ What | will (try to) talk about:

 NLL accurate parton showers

e PanScales studies on recoil schemes and
solutions

 Pheno with NLL parton showers

e Towards NNLL
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Treatment of multiple emissions e.g. in CAESAR

factorisation of matrix elements in soft
collinear limit well known (see last slide)

 how to extract NLL observable independent
(I.e. without additional information)?

e method from [Banfi, Salam, Zanderighi '05]: heed

explicit implementation of soft-collinear limit™:

kP = k,p £ = i
N’ =n—<&lnp Imax
and assume — numerically

) evaluate phase space
V(kl- ) = pV(K) integrals in this limit

( + s> 9 t) ~ (ktena kte_na kt)
~ (p'¢, p'*e, p)

~ (L, p* p)
~ (pa P p)

* example assuming Vi(k;, 1) ~ k,/Q for brevity _,



Effect of recolil on accuracy

« question: do recoil effects indeed pi = 2pij + (1 = 2)ypr + k1
vanish in soft limit (i.e. p — 0)?* p; = (1 — 2)pi; + zypr, — k1
[Dasgupta,Dreyer,Hamilton,Monni,Salam ’18] Dy = (1 o y)ﬁk

e consider situation where we first
emit p;; from p,,, p,, then emit p;,

Pii = Pp Pj X
pij
. e U
o transverse momentum of p; will be ®
. L K
ki~ kY +k - kVas — — 0
t t t Il
[
i J
* but, relevant limit is Ak; N p_kf = O(1)

ki pk
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New Parton Showers - NLL accuracy

* typical claim based on accuracy of splitting
functions etc.

e parton showers ~ NLL accurate if CMW scheme Cambridge y»3, ratio to NLL
L 1.00 s fFiopFEAEEAERAERALIE] -
for strong coupling is used T O
. : - ey |
e Observation In [Dasgupta, Dreyer, Hamilton, Monni, Salam ’18] :5 0.95} / ‘ -
- . , T / Dipole(Py8) == =
[Dasgupta, Dreyer, Hamilton, Monni, Salam '20] (PanScales & 100l 77 Dipole(direvl) m m
collaboration): = /e  panLocal(p=0.dip.) — -
5 // | PanLocaI(B—— dip.) 0O
* subtleties arise in distribution of recoil for 3 0.85 ;/"/ panLocal(8=1,ant) O
subsequent emissions = phase space where 0 a0l PanGlobalip=0) +—
80§ PanGlobal(B=1) A

accuracy is spoiled if soft gluon absorbs recall T R R R
-06 -04 -02 0.0

» apparently restricts k, ordered showers to global A =Saslog(y23)
recoil schemes
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Kinematics - global recoil scheme (Alaric example)

[Herren, Hoche, Krauss, DR, Schonherr,’22]
e Before splitting: o After splitting: ~
P J P J Pr = Pk
colour spectator ..

................................................................................

...............................................................................

| | O\ ¢ HE
[Catani, Seymour ’97] A’uy _ g’f/ B (K + K)~ (K:|- K),/ N 2K~Ky . A'MUKU _ o
K-K+ K2 K>

Lorentz transformation distributes recoil to hardest particles! 16



New Parton Showers - NLL accuracy

Several solutions/re-evaluations of parton shower concepts:

[Dasgupta, Dreyer, Hamilton,Monni, Salam, Soyez ’20], [vanBeekveld, Ferrario Ravasio, Hamilton,
Salam, Soto-Ontoso,Soyez '22] ...

o partitioning of splitting functions and appropriate choice of evolution
variable can lead to NLL accurate shower for local and global recoll
strategies

[Forshaw, Holguin, Platzer ’20]

* Connections between angular ordered and dipole showers
[Nagy, Soper ’11]

* local transverse, global longitudinal recoll

[Herren, Hoche, Krauss, DR, Schoénherr,’22], [Hoche, Asse '23], [Hoche, Krauss, DR ‘24]

* global recoll, enables analytic comparison to resummation and proof of NLL
accuracy

[Preuss '24]
* global recoll in antenna shower Vinca

17
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Pheno with NLL showers

Thrust
10 F Ie+e‘—>Z—l>hadrons I I ._-"'.._
\/_=MZ=91.2 GeV -
1| as(Mz) =0.118 v
2-jet@NLO
01k - [van Beekveld et. al. '24]_
| _"' ALEPH
—" sdf >
0.0l .= PGo +Pythia8.311 -
— PGy — 2> hadronisation
10_3 E' PGy, — (tunes PGg-24A) i
1.4 I ' ' | =
1.2 = -
0.8 F -_ - = ’_—_-_.-.—gﬂss- -
06F= =="F NLL -
: ;l———_- | | |

 PanScales shower and Alaric @ NLL accuracy
 significantly different conclusion about ability of NLL shower to describe data

Thrust (Ecpg = 91.2 GeV)

1/0cdo/dT
SHERPA MC

—<— ALEPH data

Eur.Phys.]J. C35 (2004) 457
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(similar level of tuning, a¢ = 0.118 is fixed, string fragmentation parameters in

Pythia 8 tuned to LEP data)



1/odo/dv

ratio to data

Towards NNLL

e Conclusion from

Differential 2-jet rate with Durham algorithm (91.2 GeV)

Thrust PanScales studies: A B T
——— . . NNLL needed to 57 &
1 | oas(Mz) =0.118 « simple observables —+— Data -
ol Z'JetC?M | + Achieved by :fg?<y§<4t
. . multiplicative S8 1/4¢ < pig <4t
0.01 -_;3' PGS ) spythiog 31l matching of NLO » ::' Pt G ] - _i
10-3F ot [ wmercam L | splitting kernels via g - ' I
1.4F ‘ | ———=] + correction terms ¢ .. I
1.2 - .1 capturing effect of ~ etllLE oo
g_)g :-....=.-..=.....-.-.;; .............................. __ inCIIUSi.Ve gluOn H h P t | ,17] y%urham
065 7, ,  NLL | emissions Hoche, Preste
I e 4+ Appears to be in contrast with small effects
COpTTTETEREEEE=== found so far in implementing higher order
0.6 F , , NNLLJ gplitting functions (though not in complete
0.6 0.7 0.8 0.9 1. NNLL framework yet) [Hoche, Prestel '17], [Dulat,
v=T Héche, Prestel ‘18], [Gellersen, Héche, Prestel] o

[van Beekveld et. al. ’24]



Beyond logarithmic accuracy

e Observations

| L and NLL accurate showers can be very
similar (e.g. failing of NLL accuracy :
numerically undetectable for Dire in o0 L
prominent observables like Thrust) :

P(FC1 < Z))

—t— Analytic NLL — 0
—+— unitary Shower € = 0.001 |

z(1—z) >k%/Q*n>0 =
—+— v from 4-momenta

soft kT & z

102 L

e NLL accurate showers can differ

significantly from NLL result away from il
strict limit o
% 0:8

« = subleading effect play a significant role — o~
iIn phenomenological successful parton P
showers, more systematic understanding
desirable, see also [Hoche, Siegert, DR '17] 50




Alaric beyond NLL - subleading effects

assume Sudakov decompose like derivation of splitting functions leads to:

Pq(qF‘i(piapj?ﬁ) — CF (1 - 8)(1 - ZZ)

()

gg |

(pzapjaﬁ) — QCA ZiRg

2 2 ]
l—¢ |

F _
Pg(qH)(pupj)n) :TR 1

ultimately, “proper”
splitting variables:

2
1 —o(l — 24 K)
z
1 —v(l — 24 K)

)

1




Alaric — subleading effects in Z+jets

pT spectrum, Z — ee (dressed)

» effects/choices beyond NLL accuracy:

“r”

e choice of evolution variable (up to
factors of z ~ 1)

o identify PS

CMS, Ap(Z,]1), boosted regime, /s = 7 TeV

—+— ATLAS Data
arXiv:1406.3660

—— K=Yp

—— K=Yp, t

—+— K=Yp,zi—z

—— K= Pz

parameter 7

= =

—4— CMS Data

arXiv:1301.1646

MC /Data
o

with z,, Z;

—— K=Yp
—— K:Zp,tn

CCUT\OUTRr Ul UIN
= I"I'W‘|IV

©C %P0 o Rr*-

Q

—+— K=Yp,zi =z

_I_KZ]?Z

 choice of recoll

momentum K
(NLL accuracy

needs “hard” K)

-
o

MC /Data
OO OO0 O KRR MR

dudududalbul bl

UIOVNI 0\ O R R N WA W

A¢(Z,]1) [rad]
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SHERPA MC
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Inclusive jets (R = 0.4) with the leading jet satisfying 0.0 < |y| < 4.7

Alaric at the LHC — jets

+ CMS Data
arXiv:1605.04436

—— Alaric

* [Hoche, Krauss, DR '24] extend Alaric method to IS
evolution

o satisfactory description of inclusive and dijet

d*c/dp,dy [pb/GeV]

events - _;
* transverse momentum spectrum of leading jet e,
and ratio 3-to-2 jet rate E
3-to-2 jet ratio for p*> > 50 GeV (R = 0.5) 1075 L —
g [ T R - < E
08 - + | = 10-6 % .].0 N ]0\]_%
0.6 —: 10~7 é— N ]0\9 —é
0.4 _ 107° ;— . _;
ST e Ty (I
0.2 Alaric N 1010 ;_ \5(\5\ 7@@ —\—]0\y _;
I T I— 10—11 E I | I N B — | I\d\l [ | I N | I N E
© = 500 1000 1500 2000 2500
5 % = p1 [GeV]
g .
IR N

Hr [GeV] 2 3



Conclusion

* Progress on logarithmic accuracy of parton showers (as compared to resummed
calculations)

» Effect on “general-purpose” nature to be seen

 reminder to Paolo Nason'’s talk yesterday,
“ ‘best’ theory framework [has] not always [been] successful in SMC land ”

 Qutlook:

* Probably NNLL PS matched with NNLO fixed order in near future (at least on
time scale of future collider)

* Non-perturbative corrections/soft physics effect might become limiting factors
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