Sc-qubits as particle detectors

Istituto Nazionale di Fisica Nucleare

Angelo 24/7/2024

- State of the art -

Many proposals for QND readout of the status of a cavity during last years

C. Braggio et al, arXiv:2403.02321v2

Can we imagine a phonon-mediated application?

State of the art of phonon detection

(CRESST/NUCLEUS experiments)

Superconducting ^{DM}/^v thermometers (TES)

Limitation: individual readout

5 mm

Pro: record-low energy threshold ~ 20 eV

BULLKID: KID-based phonon-mediated particle detector

1. carving of dices in a thick silicon wafer

2. lithography of multiplexed KID array

- 4.5 mm deep grooves
- 6 mm pitch
- chemical etching

0.5 mm thick common disk:

- holds the structure
- hosts the KIDs

KID array

- 60 nm aluminum film
- 60 KIDs lithography

3. assembly

Assembly

- 3D-printed Cu holder
- Aluminum case

60 dices 0.35 g each 1 readout line

Energy calibration and resolution

Exploit the Poisson's statistics of bursts of N optical photons of known energy ϵ to extract the calibration constant $d\phi/dE$:

Average over 8 channels: $26 \pm 7 eV$ Energy threshold at $6\sigma 160 \pm 13 eV$

A. Cruciani, et al, Appl. Phys. Lett. 121, 213504 (2022)

2 proposals as example Estimating the Energy Threshold of Phonon-

The Superconducting Quasiparticle-Amplifying Transmon: A Qubit-Based Sensor for meV Scale Phonons and Single THz Photons

Fink et al, arXiv:2310.01345v3

Estimating the Energy Threshold of Phononmediated Superconducting Qubit Detectors Operated in an Energy-Relaxation Sensing Scheme

R. Linehan, arXiv:2404.04423v1

2 proposals as example Estimating the Energy Threshold of Phonon-

The Superconducting Quasiparticle-Amplifying Transmon: A Qubit-Based Sensor for meV Scale Phonons and Single THz Photons

Fink et al, arXiv:2310.01345v3

Estimating the Energy Threshold of Phononmediated Superconducting Qubit Detectors Operated in an Energy-Relaxation Sensing Scheme

•			~				
Design	Number	Qubit Design	Ground	Si-SC phonon	Si-Cu phonon	Spatially-averaged	Chip
	of Qubits		Plane	absorption prob.	absorption prob.	phonon collection eff.	Threshold
	N_q			$p_{a,s}$	$p_{a,c}$	$\eta_{ph,sp}$	$E_{thr,chip}$
1	6	Xmon	Full	1.0	0.1	0.14%	737 eV
2	6	Xmon	Full	0.1	0.1	0.12%	860 eV
3	6	Xmon	Limited	1.0	0.1	2.07%	49 eV
4	6	Xmon	Limited	0.1	0.1	1.44%	71 eV
5	6	Xmon	Full	1.0	1.0	0.14%	737 eV
6	6	Xmon	Full	0.1	1.0	0.12%	860 eV
7	6	Xmon	Limited	1.0	1.0	1.76%	58 eV
8	6	Xmon	Limited	0.1	1.0	0.76%	135 eV
9	2	Xmon	Full	1.0	0.1	0.05%	1157 eV
10	10	Xmon	Full	1.0	0.1	0.24%	574 eV
11	2	Xmon	Limited	1.0	0.1	1.38%	41 eV
12	10	Xmon	Limited	1.0	0.1	2.39%	57 eV
13	6	Collection Fins	Limited	1.0	0.1	17.0%	O(0.1) eV
14	6	Collection Fins	Limited	0.1	0.1	12.6%	O(0.1) eV

BULLKID proposed upgrade

Overlap

5um

Substrate

5um

- Exploits QPs trapping using different metals for absorber and detector
- Role of the proximity effect?
- Test in progress

L. De Santis MD Thesis

WP	Activity	Where	
WP1 - Tools	Data handling	GSSI / Genova	New protocol and software for triggering
	Simulations software	RM1	Phonon simulations
	RO chain upgrade	FBK	JPA
WP2 – Qubit as detectos	Optical calibration		Design -> installation
	Self-tagging source	LNGS/GSSI	Use of source
	Performance	RM1/GSSI/ LNGS	Tests
WP3 – Det upgrade	Remove GP	RM1	Increase of efficiency
	Novel design	RM1	
	Neutron beam	Trento	Tests at neutron beam
	Package study	GSSI/LNGS	Radioassay and modelling
WP4 – Impact	Particle physics	RM1	Prespective for low energy DM
	Quantum Computing	Trento	Fault detection in quantum circuits