
OCTOPUS

Giovanni Benato
July 24, 2024



What is Octopus?

● General framework for data processing

○ Started as small software to process Berkeley TES data

○ Expanded to process continuous data with any raw data format

○ Expanded  to process triggered waveforms

● Use cases

○ Berkeley data

○ CROSS

○ BINGO

○ GAGG (Gio’s neutron detector)

○ CUPID

○ DAREDEVIL

2



Main features

● Language: C++17

● Input data formats: Berkeley ROOT data, CUPID binary data, CAEN triggered data

→ Actual software decoupled from input format, any other format is acceptable

● Output format: ROOT

→ HDF5 and other formats can be considered

● GUI: not really, just plotting waveforms to tune the parameters of each algorithm

● Other dependencies: FFTW3

● Installation procedure: cmake

3



Where to find the code?

● At the moment, hosted in a private git repository of UC Berkeley

○ If you want access, send me your github.com username and you’ll be satisfied

● In the coming N months, we are planning to:

○ License it

○ Make it open source

○ Write a technical paper

→ In this way we don’t waste time making agreements between collaborations

→ Possible transition to collaboration tool to be discussed between the main authors

4



How do we talk to Octopus?

● User interface provided by TOML config files

● key=value approach

● Hierarchical (can define nested parameters)

● Available types: string, int, float, bool, datetime, array, table

→ Floats must have a digit after the dot (i.e. 1. is not valid, must specify 1.0)

● Non-valid keys are ignored → Octopus will throw a warning

● Non-valid values cause an error → Working on a better feedback from Octopus

● Spacing and indentation are ignored (useful only for readability)

● Comments start with #

5

https://en.wikipedia.org/wiki/TOML


TOML files in Octopus

[directories] # This is a section, or category
rawdir     = “/data/LSC/RUNS/DATA/RUN9”
triggerdir = “/home/benato/CROSS/Data/Triggered”

[runConfig]
filenamePrefix = "20230324T203458”
runNumber      = "000740"

[settings]
rawType   = "Cupid"       # This is a string
runType   = "reconstruct"
draw      = false         # This is a boolean
verbosity = 5             # This is an integer

6



TOML files in Octopus

[channels.heat] # This is a sub-category
list = [10,12]  # This is an array

[module.module.heat]
windowlength = [1.0,1.5] # Array of floats (one value per channel)
pretrigger   = [0.5]     # The value is copied over to all channels!
Draw         = false
Select = [ ["module","module","isnoise",true],                  # Array of
           ["module","numberoftriggers","numberoftriggers",1] ] # arrays!

7



4 sets of main programs:

1. PlotDataStream 

○ Plots data stream of N channels in user-defined time window

○ Useful to look at waveforms and decide trigger parameters

2. Trigger                                                                                                                                                               Run on

○ Runs threshold trigger on original or differentiated waveform                          single

○ Writes ROOT file with sample index of triggered events                                        channel!

3. Octopus
○ Reads Raw data and trigger data in parallel

○ Reconstructs event-based quantities and writes them to ROOT file

4. Multi-channel analysis (not implemented yet)

○ Reads Octopus output

○ Reconstructs coincidences and any other multi-channel variable, writes ROOT file

Octopus workflow

8

Might merge 
into Octopus 
as a module



Channel handling
● User can define classes of channels (aka aliases)

● No hard-coded channel alias, no hard-coded alias names

● For each alias, must specify if the data are continuous or not

● Full analysis-chain defined on an alias base, but no trace of alias in output files

→ If you mess up the processing of one channel, defined a new alias exclusively for it,

     comment out the other aliases, and rerun Octopus just for that specific channel!

[channels.heat]
list = [10,12]
waveformtype = "continuous"

[channels.prisencolinensinainciusol]
list = [11]
waveformtype = "continuous"

9



PlotDataStream
[directories]
rawdir       = "/home/gbenato/Cross/Data/OctopusData/Raw/"
triggerdir   = "/home/gbenato/Cross/Data/OctopusData/Triggered/Run000740/"
[runConfig]
filenamePrefix = "20230226T203003"
runNumber      = "000740"
[settings]
rawType     = "Cupid"
verbosity   = 5 # 1-->Error 2-->Warning ... 5-->Debug
startTime   = 0.0 # in seconds
stopTime    = 500.0 # in seconds
stride      = 1 # rebin (to make the plot faster for long periods)
[channels.heat]
list = [10,12]
waveformtype = "continuous"

10

n



PlotDataStream
$ PlotDataStream /path/to/config/plotdatastream.toml

11



PlotDataStream
Same, but zoomed

12



Trigger

● Trigger logic:

○ Compute baseline and baseline RMS on running buffer

b
i
 = ∑

k=i
k+N x

i

rms
i
 = ∑

k=i
k+N √(x

i
 - b)2/N

○ Check if the M samples right after the buffer are t∙rms time higher than baseline:

if x
j
 > b

i
 + t∙rms

i
 ∀ j∈{i+N+1, i+N+3} ⟹ triggered event at sample j

○ Move buffer by 1 samples and repeat

● The same can be run on the original data stream, or on its derivative

● Fancier triggers on the to-do list

● Trigger speed: 3.5 days of data (2 kHz sampling) triggered in 50 sec

● CPU time does NOT depend on buffer size → If you touch that code I cut your fingers!

13



Trigger
[directories]
rawdir       = "/home/gbenato/Cross/Data/OctopusData/Raw/"
triggerdir   = "/home/gbenato/Cross/Data/OctopusData/Triggered/Run000740/"
processeddir = "/home/gbenato/Cross/Data/OctopusData/Reconstructed/Run000740/"
[runConfig]
filenamePrefix = "20230324T203458"
runNumber      = "000740"
[settings]
rawType = "Cupid"
runType = "trigger"
draw = false # Set to true to fine-tune the trigger parameters!
noiseTriggerPeriod = 60 # Save a noise event every 60 seconds
overwrite = true
verbosity = 5
...

14



Trigger
...

[channels.heat]
list = [10,12]
waveformtype = "continuous" 

[trigger.heat]
rmsList = [2.0,3.0]  # Set threshold to baseline + rmsList[i]*RMS
nAboveList = [3]     # Requires 3 consecutive bins above threshold
bufferLength = [0.2] # Buffer length, in seconds

15



Trigger: some example
$ Trigger trigger.toml

16

Missing units!



Trigger: output format

In the end, you will very rarely need

to open this file!

17



Octopus (the executable, not the full software)
● Goal: reconstruct all event-based quantities

● Strategy:

○ Process each channel separately

→ Code will be easy to parallelize in the future

→ Can reprocess one channel without touching the others, if needed

○ Event reconstruction organized in “modules”

→ Each module does only one thing

→ Each module can access the output of previous modules

○ Smart logic to handle module order

→ Reads the module order from config file

→ Chains modules automatically, depending on their type to minimize access to raw 

data

→ Can place selection cuts on output of previous modules
18



Octopus: config file
[directories]
rawdir       = "/home/gbenato/Cross/Data/OctopusData/Raw/"
triggerdir   = "/home/gbenato/Cross/Data/OctopusData/Triggered/Run000740"
processeddir = "/home/gbenato/Cross/Data/OctopusData/Reconstructed/Run000740/"
[runConfig]
filenamePrefix = "20230324T203458"
runNumber      = "000740"
[settings]
rawType   = "Cupid"
runType   = "reconstruct"
draw      = false # General draw option
verbosity = 5
overwrite = true

...
19



Octopus: config file
...
[channels.heat]
list = [10]
waveformtype = "continuous"
[module.module.heat] # Retrieves waveform from raw data and writes some flags
windowlength = [1.0] # Default waveform length (overwritable by next modules)
pretrigger   = [0.5] # Baseline length (overwritable by next modules)
Draw         = false # Specific draw option of this module
# The following module will run for all channel aliases (“heat” not specified)
[module.timestamp] # Just writes the timestamp to the output file
Draw = false
[module.numberoftriggers.heat] # Counts triggers in window
...

20



Octopus: config file
● General options available to all modules:

Draw → bool
InputWaveform         → string
OutputWaveform        → string
Pretrigger            → array of floats
WindowLength          → array of floats
InheritFiltersFrom    → string
RunOnlyOnGoodEvents   → bool
Select, Cut           → Will explain later
CutOutside, CutInside → Will explain later
CutAbove, CutBelow    → Will explain later

● Specific options available to each module

→ Module documentation available with executable ModuleHelp

21



Octopus: event filters (aka selection cuts)
[module.baselineslope.heat]
Select = [["module","module","isnoise",true], # Select only noise events
          ["module","numberoftriggers","numberoftriggers",1]]# Select events
                                                             # with just 1
                                                             # trigger
CutInside = [["module","baseline",[0.2,0.5],[0.3,0.6]],# 2 lists for min/max
             ["module","numberoftriggers",[0.0],[2.0]]]
CutInside = [["module","baseline",[0.2,0.5]]] # Here we need just one list

[module.risetime.heat]
InheritFrom = “module.baselineslope” # Import filters from previous module

22



Octopus: event filters
● What if we want to make a strict event selection and run the module only on events that 

pass the selection? E.g. what if we want to do the average pulse on 2615 keV events?

RunOnlyOnGoodEvents = true

This option will just run the module on events that pass the filters, and default the output 

variables to some predefined values otherwise

● What if we want to apply filters to events, but run the module on all events anyway?

RunOnlyOnGoodEvents = false

This option runs the module over all events, and sets an output variable “good” to false in 

the output file

23



Calling modules multiple times
● Modules can be called multiple times, just adding an extra-label in the module name:

[module.averagepowerspectrum.heat.ap]
…
[module.averagepowerspectrum.heat.anps]

● Extra-labels are not hard-coded anywhere, the user is free to use whatever naming

● Extra-labels are attached to the output variable names (TTrees, TH1Ds, …)

→ Please use self-explaining labels

→ If I find this in your output files I delete your cupid-login account:

     [module.averagepowerspectrum.heat.test1]

● Extra-labels can be used also if you call a module just once, if you really want to

24



Basic module

● Retrieves waveform 

from raw data

● Retrieves muon, 

pulser, noise and 

signal flags and stores 

them to output

25



Module numberoftriggers

● Retrieves number of 

triggers in windows 

and stores it to 

output file

26



Module baseline
● Computes baseline and baseline RMS

● User-defined window for baseline calculation

[module.baseline.heat]
StartTime = [0.0]  # in seconds
StopTime  = [0.49] # in seconds
Draw = false

27



Module baseline

28



Modules logic
● Depending on the situation, modules can be run sequentially with other modules, or on 

their own

a. If a module just needs the waveform and writes a per-event output (e.g. baseline)

→ Run sequentially

     → Loop over channels, loop over events, loop over modules

b. If a module writes a “global” output (e.g. ANPS)

→ Run sequentially, but triggers and end-event-loop afterwards

c. If a module needs the “global” output of a previous module (e.g. optimum filter)

→ Restart the loop over events

→ Might need to re-run some previous modules that are no more in memory

d. If a module needs an internal loop over events (e.g. numberoftriggers)

→ Standalone run

     → Loop over channels, loop over modules, loop over events
29



Available modules
● Timestamp

● Number of triggers

● Baseline

● Baseline slope

● Baseline subtraction

● Max-minus-baseline

● Trigger delay + correction

● Risetime

● Decay time

● Pulse integral

● Fourier transform + inverse

● Integral of power spectrum

30

● Average power spectrum

● Average pulse

● Iterative average pulse

● Optimum filter

● Pole-zero correction

● Time-based convolution with any filter

● Stabilization

● Calibration

● Chi2 on time or freq domain

● Synthetic pulses



Modules to be developed in the future

● Truncated pulse fit

● Notch filter in complex space (to subtract noise that keeps the phase)

● Frequency-based trigger?

● …

31



Module documentation
● Module documentation available through ModuleHelp executable

● Documentation automatically detected from module structure, no hardcoded s**t!

● Interface to be improved

$ ModuleHelp
...
Debug: Available modules:
Debug   : Found module: averagepowerspectrum
Debug   : Found module: averagepulse
Debug   : Found module: baseline
Debug   : Found module: baselineslope
Debug   : Found module: baselinesubtraction
Debug   : Found module: calibration
...

32



Module documentation
Debug   : List of modules' options with corresponding default values:
Debug   : --------------------
Debug   : Module averagepowerspectrum.myalias
Debug   : Option Draw:  false
Debug   : Option InheritFiltersFrom:
Debug   : Option InputWaveform: original
Debug   : Option OutputWaveform:
Debug   : Option RunOnlyOnGoodEvents:   false
Debug   : Option pretrigger
Debug   : Ch    Value
Debug   : -1    0.500000
Debug   : Option windowlength
Debug   : Ch    Value
Debug   : -1    1.000000
...

33



Performance and bottlenecks

● Triggering of ~5 days of data, single channel, 2 kHz sampling frequency in ~1 min

● Full data production until OF in ~5 min

● Current bottlenecks (by educated guess, haven’t used a profiler yet):

○ IO: need to read the raw data for each sequence of modules

Solution: load full datastream in memory

○ Event filters repeated for each module

Solution: reimplement the filter logic using e.g. event lists

○ Fourier transform re-allocating memory

Solution: need to look into it in more detail

34



Limitations of current design

● Multi-channel analysis not feasible

→ E.g. denoising or decorrelation not possible

35



New big features to be included in the future

● Interface to some DB

→ Must be optional also at compile time

● Automated documentation (e.g. doxygen)

● Choice of output data format (e.g. ROOT vs HDF5)

● Python sandbox for development?

36


