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I. PRESENTATION OF MMNLP (based on notes by R. Vitolo)

• The project started in Rome and was initially led by Francesco Ca-

logero, now ‘affiliato’ INFN and Università di Roma La Sapienza. So-

me members were, among others, Degasperis, Levi, Ragnisco, Santini,

. . . The focus was (and is currently) on the integrable systems (≈
explicitly solvable models in Mathematical Physics., typically

evolving).

• Substantial participation by the Lecce group: Boiti, Konopelchen-

ko, Leo, Martina, Pempinelli, Prinari, Soliani, Solombrino, . . .

• Retirements were shrinking the number of project members to a

dangerous level. R. Vitolo was appointed the new national coordina-

tor. He started new units whose staff are mostly Mathematical Phy-

sicists of various extractions (with interests in nonlinear phenomena,

including possible excursions beyond the paradigm of integrability).



I. DIGRESSION ON INTEGRABLE SYSTEMS

• Integrable systems have been known for a long time in classical

mechanics. Earlier examples: the motion of a particle under a central

force (e.g., the Kepler problem), several types of tops.

• Most integrable systems are Hamiltonian. So there is a manifold of

states, or phase space U . There is a Poisson tensor P, meaning that

P : U 3 u 7→ Pu , Pu : T ∗u U → TuU ,

and that one gets a Lie product { , } on the functions U → R, called

Poisson bracket, setting

{F,G}(u) := 〈duF,PuduG〉 for F,G : U → R .

Finally, the state u = u(t) evolves with time t ∈ R according to

du

dt
= PuduH , H : U → R the Hamiltonian function.



I. DIGRESSION ON INTEGRABLE SYSTEMS

• Liouville-Arnol’d theorem: if dimU = 2n, P is nondegenerate

and there exist n independent constants of motion Hk : U → R

(k = 1, ..., n) in mutual involution ({Hk, H`} = 0 for k, ` = 1, ..., n),

then the evolution equation can be solved explicitly (by quadratures)

for arbitrary initial data. So, we have an integrable system.

• There are deep connections between the constants of motion and

the (one-parameter groups of) symmetries of a Hamiltonian system

(:= transformations U → U preserving all structures).

• Integrable systems are rare. About the 1960-1970s, there was an

explosion of this research area, with the discoverey of many new

integrable systems and of algebro-geometric techniques to generate

or analyze them (Lax pairs, biHamiltonian structures, Lie algebra

methods, r-matrix theory,...). This was the seed for MMNLP.



I. DIGRESSION ON INTEGRABLE SYSTEMS: EXAMPLES

• The Calogero-Moser (CM) system (1969-1975) consists of n parti-

cles on a line, interacting in pairs with an inversely quadratic potential.

• CM is a Hamiltonian system. The phase space U is the set of pairs

u = (x, p), x = (x1, ..., xn) the positions, p = (p1, ..., pn) the momenta

(xi, pi ∈ R, xi 6= xj). Time evolution reads ( T := transposition)

d

dt

 xT

pT

=

 0n 1n

−1n 0n

 ∂H/∂xT

∂H/∂pT

, H(x, p) := Σ
i

p2
i

2
− Σ
i<j

1

(xi − xj)2
;

the above matrix is the Poisson tensor,H is the Hamiltonian function.

• CM admits n independent constants of motion in involution

Hk(x, p) :=
1

2
tr(Lk(x, p)) (k = 1, ..., n), L(x, p)ij := δijpi +

1− δij
xi − xj

(L(x, p) is the so-called Lax matrix; H = H2).



I. DIGRESSION ON INTEGRABLE SYSTEMS: EXAMPLES

• The Korteweg-de Vries (KdV) equation (1895) is the PDE

ut = uxxx + 6uux (u : R2 × R→ R, (x, t) 7→ u(x, t)) ;

it describes shallow water waves in a rectilinear channel (u(x, t) :=

variation of the water surface height at position x and time t).

• KdV has the solitary wave solution (observed by Scott Russel in 1844)

u(x, t) :=
c

2 cosh2(
√
c

2 (x + ct))
(c ∈ R+ arbitrary) .

• KdV is a Hamiltonian system with an infinite-dimensional phase

space U of (regular, decaying at infinity) functions u : R → R,

x 7→ u(x). Indeed, with δ/δu the functional derivative, KdV reads

ut = ∂x

(
δH

δu

)
, H : U → R , u 7→ H(u) :=

∫ +∞

−∞
dx

(
u3 − 1

2
u2
x

)
;

(H the Hamiltonian function; ∂x represents the Poisson tensor).



I. DIGRESSION ON INTEGRABLE SYSTEMS: EXAMPLES

• KdV possesses infinitely many, independent constants of motion

Hk : U → R , Hk(u) :=
4k

2k + 1
tr(Lk+1/2(u)) (k = 0, 1, 2, 3, ...) ,

L(u) := ∂xx + u (Lax operator); tr the Adler trace .

H0(u) = 1
2

∫
dx u,H1(u) = 1

2

∫
dx u2,H2 = H ,H3(u) = 1

2

∫
dx (5u4−

10uu2
x + u2

xx), ... . The Hk s are in involution with respect to the

Poisson bracket {F,G}(u) :=
∫
dx δFδu ∂x

(
δG
δu

)
.

An infinite-dimensional version of the Liouville-Arnol’d construction

holds for this system, and the KdV equation with arbitrary initial

data can be solved explicitly. (Results of the 1960-1970s by: Kruskal,

Miura and Zabusky; Lax; Faddeev and Zakharov; Adler; Gelfand and

Dikii...).



DIGRESSION: EXAMPLES OF INTEGRABLE SYSTEMS

• The integrability of KdV, CM and many other systems can be

understood in terms of a second Hamiltonian formulation.

For example, in the KdV case, besides the first Hamiltonian formula-

tion with Poisson tensor P = ∂x, there is a second formulation

ut = P′
δH ′

δu
,

P′ ≡ P′u := ∂xxx+4u∂x+2ux , H ′(u) :=
1

2

∫
dx u2 (i.e., H ′ = H1)

(Magri, 1970s. Magri is now in the Milano-Bicocca unit of MMNLP).

P,P′ are compatible (in a suitable sense), and characterize the con-

stants of motion Hk via the recurrence relation

P′
δHk
δu

= P
δHk+1

δu
(k = 0, 1, 2, 3, ...).

• Note that KdV is a continuous system (both in space and time).

The CM system is semidiscrete (space-discrete, time-continuous).



I. THE LOCAL UNITS OF MMNLP

• Lecce: S. Abenda (50%, Sez. Bologna), G. Landolfi (50%), L.

Martina (80%), G. Saccomandi (Sez. Perugia), R. Vitolo (national

responsible), B. Konopelchenko (affiliate).

• Milano: G. Gaeta, G. Gubbiotti, L. Pizzocchero (local responsible,

80%), P. Vergallo (post-doc Messina).

• Milano-Bicocca: G. Falqui, F. Magri, P. Lorenzoni (local respon-

sible), M. Pedroni, A. Raimondo, K. van Gemst (post-doc).

• Roma: S. Carillo, F. Coppini (PhD), A. De Sole (local responsible),

P.M. Santini, D. Valeri, F. Zullo, F. Calogero (affiliate), M.V. Falessi

(Ric. ENEA 50%), L. Casarin (PhD).

• Torino: M. Onorato (50%), G. Ortenzi (local responsible).

• Trieste: T. Grava (local responsible) D. Lewanski, D. Guzzetti, P.

Rossi (Univ. Padova), G. Tondo, I.S. Jaztar Singh (PhD Padova), D.

Rachenkov (PhD), Bing-Ying Liu (post-doc).



II. THE MILANO UNIT OF MMNLP

Giorgio Gubbiotti is RTD-B (and will soon be appointed Associate

Professor) in Mathematical Physics at the Dept. of Mathematics of

Milano. He works on many aspects of integrable systems, e.g.:

� time-discrete systems and their integrability: construction and ana-

lysis via group theory, coalgebra theory, geometrical methods [1,2];

� new notions of entropy for the above systems [2];

� time-continuous integrable Hamiltonian systems with homogenous

Poisson structures: classification [3].

[1] G. Gubbiotti, D. Latini and B. K. Tapley, Coalgebra symmetry for discrete

systems, J. Phys. A: Math. Theor. 56 (2023), 205205 (34 pp).

[2] M. Graffeo and G. Gubbiotti, Growth and Integrability of Some Birational

Maps in Dimension Three, Ann. Henri Poincaré 25 (2024), 1733-1793.

[3] G. Gubbiotti, B. Van Geemen, P. Vergallo, Line geometry of pairs of second-

order Hamiltonian operators and quasi-linear systems, arXiv:2403.09152v1 (2024).



II. THE MILANO UNIT OF MMNLP

Pierandrea Vergallo has a post-doc position at the University of

Messina (and is associated to INFN at Milano). He also works on

many aspects of (time-continuous) integrable systems, e.g.:

� application of continuum mechanics to model the onset of damage

in aerospace structures [1];

� Hamiltonian formulation of the kinetic equations for dense soliton

gases [2];

� integrable Hamiltonian systems with homogenous Poisson structu-

res: classification (see Ref. [3] in the previous page).

[1] P. Vergallo, F. Nicassio, S4: simple quasi-1D model for structural health mo-

nitoring of single lap joint software, Eur. Phys. J. Plus (2023) 138, 1135 (14 pp).

[2] P. Vergallo, E.V. Ferantopov, Hamiltonian aspects of the kinetic equation for

soliton gas, arXiv:2403.20162v1 [nlin.SI] (2024).



II. THE MILANO UNIT OF MMNLP

Giuseppe Gaeta is Full Professor of Mathematical Physics at the

Dept. of Mathematics of Milano; he organized international and na-

tional conferences on symmetry, integrability and perturbation theory.

His research interest include:

� the integrability of stochastic ODEs (' a Brownian motion supe-

rimposed to a deterministic evolution law) [1];

� mathematical models for biological evolution [2];

� solitary waves in models for DNA dynamics [3].

[1] G. Gaeta, On the integration of Ito equations with a random or a W-

symmetry, J. Math. Phys. 64 (2023), 123504.

[2] G. Gaeta, On some dynamical features of the complete Moran model for

neutral evolution in the presence of mutations, Open Commun. Nonlin. Math.

Phys. 4 (2024), 22-43.

[3] G. Gaeta, L. Venier, Solitary waves in twist-opening models of DNA dyna-

mics, Phys. Rev. E (3) 78(2008), no.1, 011901, 9 pp.



II. THE MILANO UNIT OF MMNLP

Livio Pizzocchero (local coordinator) is Associate Professor of Ma-

thematical Physics at the Dept. of Mathematics of Milano. His

research interest include:

� the exactly solvable cases in renormalization of vacuum states for

a quantized scalar field (theory of the Casimir effect) [1];

� the exactly solvable Friedmann-Lemâıtre-Robertson-Walker cosmo-

logical models with matter and a scalar field [2];

� approximation methods in the dynamics of fluids and plasmas [3].

[1] D. Fermi, L. Pizzocchero, On the Casimir Effect with δ-Like Potentials, and a

Recent Paper by K. Ziemian, Ann. Henri Poincaré 24 (2023), 2363-2400.

[2] D. Fermi, M. Gengo, and L. Pizzocchero, Integrable scalar cosmologies with

matter and curvature, Nuclear Physics B 957 (2020), 115095 (102 pp).

[3] L. Pizzocchero, On the global stability of smooth solutions of the Navier-

Stokes equations, Appl. Math. Letters 115 (2021), 106970 (11 pp).


