Consiglio di Sezione, 8 luglio 2024

T. LARI

ATLAS: il rivelatore

Milano è in ATLAS dalla Letter of Intent (1992)

CDS 8 LUGLIO 2024

ATLAS

Letter of Intent for a General-Purpose pp Experiment at the Large Hadron Collider at CERN

. . .

. . .

Members of the ATLAS Collaboration

Physics Department, Milan University and I.N.F.N., Milan, Italy G.Battistoni, G.Bellini, D.Camin, D.Cavalli, G.Costa, L.Cozzi, A.Cravero, M.di Corato, A.Ferrari, F.Gianotti, P.Inzani, L.Mandelli, M.Mazzanti, L.Perasso, L.Perini, P.Sala, M.Sciamanna

ATLAS: objettivi di fisica

- Scoperta e misura delle proprietà del bosone di Higgs
- Ricerca di fisica oltre il modello Standard
- Misure di precisione delle particelle del Modello Standard

Circa 100 articoli/anno

ATLAS, presente e futuro

- Si stanno completando le analisi dei dati di run 2
- Il run 3 e in corso e durerà 4 anni, raccogliendo circa il doppio di dati del run 2
- High-Luminosity phase dal 2029 con grossi upgrade del rivelatore

Analisi dei dati di run 2

CDS 8 LUGLIO 2024

Particle	Produced in 140 fb ⁻¹ pp at $\sqrt{s} = 13$ T							
Higgs boson	7.8 million							
Top quark	275 million	(115 million tt)						
Z boson	8 billion	$(\rightarrow \ell \ell$, 270 million per flavour)						
W boson	26 billion	$(\rightarrow \ell \nu, 2.8$ billion per flavour)						
Bottom quark	~160 trillion	(significantly reduced by accepta						

1

Fisica del quark top

- Persone coinvolte: Lidia Dell'Asta (PA) + O(2) laureandi triennali Obiettivo: studio dell'accoppiamento del quark top con il bosone Z
- Analisi:
 - **ricerca FCNC t** \rightarrow **Zq** [TOPQ-2019-06]
 - \triangleright risultato: miglioramento dei limiti osservati sui BR t \rightarrow Zu (t \rightarrow Zc) di un fattore 3 (2) rispetto all'analisi precedente stato: paper pubblicato [Phys. Rev. D 108 (2023) 032019]
 - misura produzione in canale t di tZq [ANA-TOPQ-2021-21]
 - obiettivo: miglioramento della misura di sezione d'urto inclusiva (incertezza: 10%) e prima misura di sezione d'urto differenziale (incertezza: 25% per bin)
 - stato: richiesta EdBoard entro fine estate
 - data prevista: fine 2024
 - misura produzione tWZ
 - obiettivo: prima misura in ATLAS (CMS ha osservato il processo, misurando una sezione d'urto 2.6 x SM, <u>TOP-22-008</u>)
 - stato: studi preliminari per capire quale è il canale più promettente (4 o 3 leptoni?)

Fisica dell'Higgs : misura massa

The Higgs boson mass (m_H) is a fundamental parameter of the SM that can only be measured experimentally.

- Its value determines the Higgs boson production rates and decay BR: mandatory for a coherent test of the Higgs coupling structure.
- Verify the internal consistency of the SM, (interplay between the m_{top}, m_W and m_H)
- The stability of the EW vacuum depends on the value of the Higgs boson mass
- improvements in m_H uncertainty
- 13 TeV data resulted in the current most precise m_H measurement with an uncertainty of 0.09%

 $m_{H} = 125.11 \pm 0.09$ (stat.) ± 0.06 (syst.) $= 125.11 \pm 0.11$ GeV

• ATLAS made huge efforts in improving the understanding of the detector's performance during RUN2 allowing sizeable

• Shortly after last year CdS the new ATLAS measurement combining $H \rightarrow \gamma \gamma$ and $H \rightarrow ZZ^* \rightarrow 4\ell$ final states and using $\sqrt{s}=7,8$ and

Fisica dell'Higgs : self-coupling

The couplings of the Higgs boson with itself are still largely experimentally unconstrained.

- SM prediction $\lambda_{SM}^{HHH} = \approx 0.13$
- The only direct way to access λ_{SM}^{HHH} is via Higgs boson pair production: 1000 rarer than single Higgs production!

- Measuring $k_{\lambda} = \lambda^{HHH} / \lambda_{SM}^{HHH}$ crucial for our understanding of the Electroweak Symmetry Breaking (EWSB).
- Several analyses depending on the two Higgs decay : evidence from run3 LHC data ?

https://doi.org/10.48550/arXiv.2406.09971

Cozzi (magistrale) Mazzeo (PhD), Carminati, Turra

Search for Dark Photon (γ_{D})

Ongoing NEW Run-3 Search for dark-photon in $ggFSMH \rightarrow \gamma\gamma_d$:

Andrea Portentoso, Giovanni Camia, Michele Boldini (bachelor students)

Supersimmetria

Target : produzione elettrodebole di higgsini con uno spettro di massa compresso

Sensibilità usando tracce di pioni **displaced** dal vertice primario

Sala (PhD), Carra, Lari

Analisi dati di run 2 pubblicata su **PRL** quest'anno Analisi dei dati di run 3 partita

Calcolo: Tier 2

- simulation and reconstruction)

Last year the Milano T2 still the most performing site among the ATLAS Tier2

CDS 8 LUGLIO 2024

Run 3

CDS 8 LUGLIO 2024

Nuovo run

- Buona efficienza di data taking, nonostante l'invecchiamento del rivelatore e la luminosità instantanea più elevata
- Ci aspettiamo di raccogliere 100 fb⁻¹ quest'anno e altrettanti l'anno prossimo
- Continua nostra responsabilità della gestione, manutenzione ed operazione del sistema di alta tensione del calorimetro LAr. Richiesto impegno durante il run corrente con presenza al CERN per shift come HW on-call expert per il calorimetro e durante lo shutdown di fine anno per manutenzione

Jpgrade per High Luminosity

CDS 8 LUGLIO 2024

TKPixel detector

- •LHC => HL-LHC : **x100** numero di canali, **x8** superficie di silicio
- r [mm]
- Partecipazione italiana: 7 sezioni, 5 MCHF (10% del costo totale)
- Milano è coinvolta nella costruzione dei moduli e nel sistema di raffreddamento

• Fondamentale contributo dei servizi di officina e di elettronica

TK - moduli

• Persone coinvolte:

- Gianluca Alimonti, Attilio Andreazza, Anna Petri, Saverio D'Auria, Antonio Carbone (PhD), Alessandro Sala (PhD), Riccardo Zanzottera (PhD)
- Simone Coelli, Andrea Capsoni, Mauro Monti, Ennio Viscione, Daniele Viganò (Officina Meccanica)
- Fabrizio Sabatini, Fabio Manca (Servizio Elettronica)
- Attività: processo di bump-bonding, assemblaggio dei moduli, caratterizzazione dei moduli
- Il PRR (che dà luce verde alla produzione) per l'assemblaggio e test è previsto in due fasi ad agosto e ottobre.

ITK - assemblaggio moduli

- Bump bonding con indio:
 - Ottimizzato il processo a Leonardo aggiungendo uno stadio di stress relief dopo l'assottigliamento dei rivelatori ٠
 - A luglio campioni con il nuovo processo ed avvio pre-٠ produzione
 - Obiettivo: ibridizzazione dei sensori FBK per il layer ٠ interno e dei sensori Hamamatsu per l'endcap
- Assemblaggio e test: •
 - Metrologia, plasma cleaning, incollaggio e wire bonding (camera pulita)
 - Test (cold box e x-ray tube, IV piano) ٠
 - Conformal coating con Parylene (camera pulita) ٠
 - Quasi completata la qualifica di tutti gli step e la preproduzione per I moduli planari, in Corso quella per I moduli 3D che vano sullo strato più interno di ITk. ٠
 - Obiettivo: ٠
 - Costruzione del 50% dei moduli INFN:
 - ~50% di uno dei due endcap
 - ~20% dell'inner system
 - Coating con parylene dell'intera produzione INFN
- Soffriamo molto dell'indisponibilità della camera pulita e dei laboratori al ciclotrone

CDS 8 LUGLIO 2024

ITk - Pixel Outer Endcap cooling

Persone coinvolte:

- Attilio Andreazza (PO), Sonia Carrà (Assegnista), Lidia Dell'Asta (PA)
- Meccanica)
- Fabrizio Sabatini (Servizio Elettronica)

del rivelatore a Pixel di ITk Collettore

Esempio: half-shell Layer 2

- Pixel Outer Line d'inter e detribuiscie de la la Calo Cole la gale de la cole de la co

CDS 8 LUGLIO 2024

Simone Coelli, Andrea Capsoni, Luciano Manara, Mauro Monti, Ennio Viscione, Daniele Viganò (Officina)

Attività: sviluppo, test e costruzione del sistema di raffreddamento a CO₂ per l'Outer EndCap

Stato della review del progetto Outer Endcap cooling

- Pixel Global Mechanics FDR [05.2024, Indico]
 - Contributi di Milano:
 - design di Type-I cooling (Simone)
 - test di prototipi (Sonia)
 - analisi FEA (Mauro)
- Next: Pixel Global Mechanics PRR [12.2024]
 - Per Layer 2 (successivamente Layer 3 e 4)
 - Vari aspetti del design da finalizzare
- Progettazione e produzione linea di ingresso (Inlet)
 - Progettazione dei connettori T per connettere i capillari alla linea di ingresso
 - Studio e prototipizzazione delle brasature dei capillari con la sede INFN di Frascati
 - Studio del coiling dei capillari
 - Capillari da tagliare alla lunghezza desiderata (target pressure drop) ad una facility dedicata al CERN
 - Test saldature tra T e tubi della linea di ingresso

CDS 8 LUGLIO 2024

ITk - Pixel Outer Endcap cooling

Progettazione e produzione linea di uscita (Exhaust)

- Piegatura 3D dei tubi che compongono le linee di uscita
- Stampa 3D dei manifold in titanio con il laboratorio LAMA di Udine
 - Design completato, stampa dei manifold finali per Layer 2 prevista a settembre
- Test saldature tubi della linea di uscita manifold

Prototipo completo Layer 2

CDS 8 LUGLIO 2024

IA di Udine r 2 prevista a

LAr upgrade di fase 2

compatibiltà col trigger di Fase 2 e resistenza alle radiazioni

Milano è responsabile del nuovo sistema di alimentazione delle schede di front-end

Le nostre deliverables: 58 nuovi LVPS (300 V input, 48 V output) mezzanine (PDB) che abbiamo gia' sviluppato per il Run 3

Antonio Carbone, Stefano Latorre, Massimo Lazzaroni, Elena Mazzeo, Laura Nasella, Francesco Tartarelli Fondamentale contributo del servizio di elettronica

- La totale sostituzione dell'elettronica di front-end e off-detector del calorimetro LAr è necessaria per

124 mezzanine di alimentazione (PDB2) della scheda di trigger di Fase I (LTDB) che vanno a sostituire le

La PDB2 converte alimentazione di 48 V nelle tensioni 1.2, 1.5, 2.5, 3.3 V necessarie alla scheda madre **Design in fase avanzata**, basato su DC/DC converter rad hard sviluppati al CERN (bPOL48V e bPOL12V) e regolatori lineari (LHC4913) **Prossimi passi** : produzione pre-prototipo entro fine 2024, test pre-prototipo e produzione prototipo 2025

Sviluppo di una mezzanina di alimentazione per la nuova scheda di front-end (FEB2) Realizzati 8 prototipi, testati a Milano e poi spediti a Nevis Lab per integrazione sulla FEB2. I prototipi sono funzionanti e vengono utilizzati attualmente in tutti i test della FEB2 Lo scorso 25/6 si è tenuta una review del Progetto FEB2. Siamo in attesa dei commenti dei reviewer per dare inizio alla produzione

LAr-LVPS

Si è conclusa la gara CERN su nostre specifiche per l'acquisto dei nuovi LVPS. CAEN si è aggiudicata la commessa. Fatto ordine CERN per sviluppo e produzione di due prototipi (data di consegna prevista Febbraio 2025)

2025 :

Test dei prototipi prima a Milano e successivamente al CERN e a BNL Test di radiazione e in campo magnetico (CERN) System test a BNL

Test di un crate completo di schede di front-end con la catena di alimentazione complete (AC/DC converter, LVPS e cavi di lunghezza reale): importante per validare la nuova architettura del front-end del calorimetro Se test stand-alone e system test OK, ordine produzione LVPS

Preventivi 2024

Tutti i numeri sono preliminari

Responsabilità

- Tommaso Lari, coordinatore digitizzazione
- Attilio Andreazza, convener produzione dei moduli di ITk pixel
- Attilio Andreazza, coordinatore pixel Atlas Italia (fino a Settembre 2024)
- Attilio Andreazza, membro CB chair advisory group
- laboratori dove si svolge la produzione)
- Francesco Tartarelli, coordinatore LAr Atlas Italia
- Francesco Tartarelli, coordinatore dell'upgrade di fase 2 del LAr power system front-end
- Saverio D'Auria, membro ITk speaker committee
- Sonia Carra, convener SUSY Electroweak subgroup
- Ruggero Turra, convener Physics Validation Coordination

CDS 8 LUGLIO 2024

L'organigramma di ATLAS è ora disponibile pubblicamente !

https://atlaspo.cern.ch/public/ATLASOrganisation/

Danilo Giugni, ITk project engineer (questo richiede la presenza al CERN, e diverse missioni per visitare i

Anagrafica

	luglio 2020	luglio 2021	luglio 2022	luglio 2023	luglio 2024
PERSONE*	34	30	32	29	29
FTE ATLAS	6.65	7.3	7.5	6.0	6.5
FTE FASE2	16.1	17.5	15.4	14.6	14.3
FTE SIGLE SINEGICHE	0.85	1.8	0.3	1.3	1.3
FTE TOTALE	23.6	26.6	23.2	21.9	22.1

* Ricercatori, tecnologi, dottorandi e borsisti

CDS 8 LUGLIO 2024

Richieste finanziarie, 1/2

	2022	2023	2024	2025	commenti
Missioni	432,000	392,500	383,000	383,000	Assegnati per il 2024 : 142,500
Consumi metabolismo	37,500	36,500	33,000	32,500	Assegnati per il 2024 : 21,000
Calcolo, CPU	84,500	185,500	83,800	32,500	Inclusi 13% di overhead (server e rete)
Calcolo, Disco	140,000	72,000	154,700	48,400	Inclusi 13% di overhead (server e rete)
Maintenance and Operation, pixel	CHF 134,000	CHF 102,000	CHF 102,000	CHF 106,000	
Maintenance and Operation, IDgen	CHF 72,000	CHF 53,000	CHF 53,000	CHF 34,000	
Maintenance and Operation, LAr	CHF 82,000	CHF 80,000	CHF 81,000	CHF 83,000	

Richieste finanziarie, 2/2

- ITk (146 keuro CORE + 23 keuro nonCORE) :
 - 3 keuro manutenzione camera pulita
 - 20 keuro refrigeratore per coating con il parilene
 - 6 keuro (CORE A) per produzione moduli
 - 10 keuro (CORE B) per module flex
 - 100 keuro (CORE B) per power supplies
- LAr upgrade :
 - 140 keuro (CORE A) pre-produzione LVPS
 - 600 keuro (CORE B) 50% produzione LVPS

• 30 keuro (CORE B) per il raffreddamento (type-1 distribution e qualifica saldature) (10 keuro dal 2024)

Richieste ai servizi

Meccanica : 1.4 FTE tecnologo (Coelli 70% e Manara 70%) + 34 mesi uomo tecnici per progettazione e officina

Elettronica : 30 mesi uomo (12 per LAr + 18 per ITk)

Backup

	bb	ww	ττ	ZZ	ΥY
bb	34%				
WW	25%	4.6%			
ττ	7.3%	2.7%	0.39%		
ZZ	3.1%	1.1%	0.33%	0.069%	
ΥY	0.26%	0.10%	0.028%	0.012%	0.0005%

N8:0

ATLAS M&O-B budgets 2020–2029 (kCHF)

	approved				preliminary	projected				
	2020	2021	2022	2023	2024	2025	2026	2027	20 28	2029
PIX	555	555	555	536	555	555	200	0	0	0
SCT	637	450	540	383	255	415	207	0	0	0
TRT	605	665	665	665	665	665	435	0	0	0
IDGen	623	573	573	567	486	328	168	0	0	0
ITK				200	391	872	1'359	1'779	1'784	1'784
LAr	645	690	670	730	730	795	795	795	795	795
TileC	647	647	604	604	604	604	647	647	647	647
Muons	1'435	1'150	765	1'355	1'370	1'420	1'440	1'440	1'440	1'440
FD	477	517	612	534	578	528	569	360	324	324
TDAQ	51	214	214	180	116	206	0	0	0	0
HGTD							343	518	537	575
Total (kCHF)	5'675	5'461	5'198	5'754	5'749	6'388	6'163	5'539	5'527	5'565

Hostile environment

Richieste calcolo: CPU

CPU (HS06)	Frascati	Milano	Napoli	Roma1	Totale	Pledged	
Totale CPU nei siti per il 2024 (HS06)	40447	41609	44546	41711	168313	166680	
Obsolescenza 2025 (HS06)	0	0	2667	0	2667		
Delta 2025 (HS06)	2877	2877	2877	2877	11508		
Totale richieste 2025 (HS06)	2877	2877	5544	2877	14175		
Totale CPU nei siti per il 2025 (HS06)	43324	44486	47423	44588	179821	179820	+8% s

Le richieste seguono le raccomandazione del C-RSG di ATLAS, con la frazione Italiana dei pledge mantenuta costante

25% di ATLAS Italia T2

Richieste calcolo: disco

Totale disco nei siti per il 2024 (TB) 3877 2863 4819 2619 14178 14000 Obsolescenza 2025 (TB) 0 <	DISCO (TB)	Frascati	Milano	Napoli	Roma1	Totale	Pledged
Obsolescenza 2025 (TB) 0 0 0 0 0 0 Delta 2025 (TB) 428 428 428 428 1712 1712 Totale richiesta 2025 (TB) 428 428 428 428 1712 15890 15890 Totale disco nei siti per il 2025 (TB) 4305 3291 5247 3047 15890 15890	Totale disco nei siti per il 2024 (TB)	3877	2863	4819	2619	14178	14000
Delta 2025 (TB) 428 428 428 428 1712 Totale richiesta 2025 (TB) 428 428 428 428 1712 Totale disco nei siti per il 2025 (TB) 4305 3291 5247 3047 15890 15890	Obsolescenza 2025 (TB)	0	0	0	0	0	
Totale richiesta 2025 (TB) 428 428 428 428 1712 Totale disco nei siti per il 2025 (TB) 4305 3291 5247 3047 15890 15890	Delta 2025 (TB)	428	428	428	428	1712	
Totale disco nei siti per il 2025 (TB) 4305 3291 5247 3047 15890 15890	Totale richiesta 2025 (TB)	428	428	428	428	1712	
	Totale disco nei siti per il 2025 (TB)	4305	3291	5247	3047	15890	15890
		1		1	1	1	
		21% d	i ATLAS Ita	lia T2			

Le richieste seguono le raccomandazione del C-RSG di ATLAS, con la frazione Italiana dei pledge mantenuta costante

Richieste calcolo: riassunto spesa

	Frascati	Milano	Napoli	Roma1	Totale
Richiesta CPU (HS23)	2877	2877	5544	2877	14175
Spesa CPU (€)	28770	28770	55440	28770	141750
Richiesta DISCO (TBn)	428	428	428	428	1712
Spesa DISCO (€)	42800	42800	42800	42800	171200
Totale (€)	71570	71570	98240	71570	312950
Overhead server	5009,9	5009,9	6876,8	5009,9	21906,5
Overhead rete	3866,2	3866,2	5466,4	3866,2	17065
Totale (overheads inclusi) (€)	80446,1	80446,1	110583,2	80446,1	351921,5

• Overheads (su CSN1):

- quota server : 7% del totale CPU + disco
- quota rete : 6% CPU + 5% disco
- □ Fattori di conversione : 100 €/TBn (disco), 10 €/HS06 (cpu)

CPU Milano : aumento +7%

Richieste calcolo 2024 vs 2025

ATLAS	CPU crescita (HS06)	CPU dism. (HS06)	DISK crescita (TB-N)	DISK dism. (TB-N)	CPU (HS06)	DISK (TB-N)	CPU (k€)	ວເຣK (k€)	Server (k€)	Totale (k€)
Frascati	2500	10004	500	0	12504	500	125,0	50,0	12,3	187,3
Milano	2500	5878	500	789	8378	1289	83,8	128,9	14,9	227,6
Napoli	2500	0	500	0	2500	500	25,0	50,0	5,3	80,3
Roma1	2500	0	500	864	2500	1364	25,0	136,4	11,3	172,7
Totale	10000	15882	2000	1653	25882	3653	258,8	365,3	43,7 🤇	667,8

- L'andamento delle risorse pledged e' abbastanza regolare negli ultimi anni
- La differenza grossa tra 2024 e 2025 e' che l'anno scorso c'erano parecchie risorse obsolete da rimpiazzare, quest'anno non ci sono dismissioni per Milano