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Executive Summary
This presentation outlines our innovative approach to fast simulation of the LHCb time sensor using
machine learning techniques. We have developed and integrating ML models, particularly gradient
boosting decision trees(XGBoost), Multiple Layer Perceptrons (MLPs) and Edge-Activated Adaptive
Function Networks (EAAFNs), to predict charge and center of gravity in the LHCb detector with
high accuracy. Our approach significantly reduces computation time from seconds to microseconds
per event, potentially revolutionizing LHCb simulation efficiency.
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LHCb Time Sensor Simulation: Current Challenges
Critical component for particle identification and timing
measurements
Current simulation uses computationally intensive TCoDe

Simulates charge deposition and signal formation in sensors
Crucial for accurate event reconstruction and physics analysis

Key limitations:
Computationally expensive, limiting simulation throughput
Difficulty scaling to meet increasing physics analysis demands

source: Angelo's slides

Zhihua Liang (INFN Cagliari) First Showcase of INFN Personnel Activities in Spoke 2 08-07-2024 4 1 9



Motivation for ML-based Fast Simulation
TCoDe simulations are computationally expensive

Need for faster simulations to increase statistics in physics
analyses

ML models can provide rapid, accurate predictions
Potential for significant speedup in overall LHCb simulation
pipeline

Successful applications of ML in other HEP simulation tasks
Calorimeter showers, track reconstruction, etc.

CERN Courier Sep/Oct 2021
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Data Preparation and Preprocessing
Dataset: text files "*.dat" from Geant4 and TCoDe simulations
400 k events in total
Converted to HDF5 format for efficient handling
Features: particle impact/exit points, energy, energy loss
Targets:

Charge: total electric charge collected by the sensor
Center of gravity: weighted average position of the collected
charge

Custom LHCbDataset class and data loader for preprocessing
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Machine Learning Approach: Overview

Explored three ML algorithms:

XGBoost: Ensemble of decision trees
Multi-Layer Perceptron (MLP): Feedforward neural network
Edge-Activated Adaptive Function Network (EAAFN): Novel
adaptive architecture

Extensive experimentation with architectures and hyperparameters

Training objectives: minimize MSE, maximize R2 score

Cross-validation for robust performance estimation

from top to bottom: XGBoost, MLP, EAAFN
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Machine Learning Approach: Algorithm Details

XGBoost (Extreme Gradient Boosting):

Ensemble method combining multiple decision trees
Trees are trained sequentially to correct errors of previous trees
Advantages: Handles missing data, robust to outliers, provides feature importance

Multi-Layer Perceptron (MLP):

Feedforward neural network with input, hidden, and output layers
Information flows through the network, transformed by weights and activation functions
Advantages: Approximates complex functions, scales well with large datasets

Edge-Activated Adaptive Function Network (EAAFN):

Novel architecture adaptively learning both connectivity and activation functions
Edges and nodes are dynamically pruned or added during training
Advantages: Discovers optimal structure, provides interpretable feature interactions
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Model Training Process

Training infrastructure:

INFN Cagliari computation server with NVIDIA A100 GPU

Training parameters:

Batch size: 1024
Optimizer: Adam (lr = 1e-4)
Epochs: 10,000
LR scheduler: Cosine annealing with warm restarts

Data: 400k events, 3% validation split
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Results: Model Performance Comparison

Model Charge Prediction Center of Gravity Time per Event

R2 Score MAE MSE R2 Score MAE MSE (s)

XGBoost 0.9742 0.0167 0.0258 0.8982 0.0513 0.1018 2.945E-05

Deep MLP 0.9890 0.0219 0.0110 0.9205 0.0417 0.0049 2.125E-05

Deep EAAFN 0.9944 0.0125 0.0056 0.9368 0.0357 0.0063 3.475E-05

Deep EAAFN achieves the highest R2 scores and lowest errors
All ML models provide significant speedup compared to TCoDe (seconds per event)

10^4 - 10^5 times faster, enabling much higher simulation throughput

Zhihua Liang (INFN Cagliari) First Showcase of INFN Personnel Activities in Spoke 2 08-07-2024 1 0 1 9



Visualization: Prediction Intervals
95% prediction intervals show the range where true values are expected to fall
Narrower intervals indicate higher confidence in predictions
Wider intervals suggest higher uncertainty and potential for improvement
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Visualization: CDF Comparison
Quantile-Quantile (QQ) plots assess normality of residuals (predicted - true)
Points along the diagonal line indicate normally distributed residuals
Normally distributed residuals suggest a well-fitted model
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Integration with Gauss Framework
Implemented TimeSensorFastSim class in GaussFastSim module
Use of ROOT's TMVA/SOFIE for efficient model inference

Load trained ONNX model
Generate optimized C++ code for inference

Modification of ProcessHits method for ML-based predictions
Flexible configuration options for model path and activation
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Integration: Key Code Snippet

class TimeSensorFastSim : public GiGaVolumeBase {
private:
    std::unique_ptr<TMVA::Experimental::SOFIE::RModel> m_model;
    std::unique_ptr<TMVA::Experimental::SOFIE::Session> m_session;
    
public:
    StatusCode initialize() override {
        // Load ONNX model
        m_model = std::make_unique<TMVA::Experimental::SOFIE::RModel>(
            TMVA::Experimental::SOFIE::RModelParser_ONNX().Parse(m_modelPath)
        );
        m_model->Generate();
        m_session = std::make_unique<TMVA::Experimental::SOFIE::Session>(
            m_model->GetSessionFile()
        );
        return StatusCode::SUCCESS;
    }
    
    bool ProcessHits(G4Step* step, G4TouchableHistory*) {
        std::vector<float> input = extractFeatures(step);
        std::vector<float> output = m_session->infer(input.data());

createHits(output, step);
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Potential Applications to Other Detector Components
RICH detectors: Cherenkov photon propagation and detection
Calorimeters: Shower development and energy deposition

Potential for significant speedup in full calorimeter simulation
Tracking systems: Charge cluster formation in silicon strips
Potential for end-to-end detector response simulation

Enabling faster, more detailed physics studies
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Next Steps
Comprehensive validation of integrated ML models

Comparison with full simulation and real data
Ensure physics performance is accurately reproduced

Optimization of ML models for time sensor simulation
Fine-tuning of hyperparameters and architectures
Exploration of additional input features

Performance benchmarking within Gauss framework
Assess speedup and resource utilization

Documentation and knowledge sharing
Detailed guide for using ML-based fast simulation in Gauss
Collaboration with LHCb simulation team for maintenance and updates
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Impact and Outlook
Success on ML-based fast simulation for LHCb time sensor

Significant speedup while maintaining high accuracy
Paves the way for adoption in LHCb simulation production

Potential for major impact on simulation efficiency and physics reach
Opens possibilities for further applications of ML in LHCb simulation

Building on experience and infrastructure from time sensor integration
Faster simulations can accelerate physics discoveries

More efficient use of computing resources
Ability to generate larger simulated datasets for precision measurements
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Conclusion
Developed ML models for fast simulation of LHCb time sensor

XGBoost, MLP, and EAAFN architectures explored
Deep EAAFN provides best accuracy and speed

Achieved 10^4 - 10^5 speedup compared to TCoDe simulation
Enables much higher simulation throughput

Integrating ML models into Gauss framework
Promising approach for accelerating LHCb simulation

Potential for broader application to other detectors and
experiments

Zhihua Liang (INFN Cagliari) First Showcase of INFN Personnel Activities in Spoke 2 08-07-2024 1 8 1 9



Thank You



Email：zhihua.liang@ca.infn.it


