

CP Violation in Charm at CDF

Angelo Di Canto (University of Heidelberg, INFN Pisa) on behalf of the CDF Collaboration

Istituto Nazionale di Fisica Nucleare SEZIONE DI PISA

CP Violation in neutral charmed decays

• Charm transitions involve first
two generations of quarks, thus
CPV in SM is expected to be
very small... but how much?
$$U_{\text{CKM}} = \begin{pmatrix} 1 - \lambda^2/2 & \lambda & A\lambda^3 (\rho - i\eta) \\ -\lambda & 1 - \lambda^2/2 & A\lambda^2 & c \\ A\lambda^3 (1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix} t$$

- For long time there has been consensus that direct CPV in charm at 1% level would be a striking signal of New Physics...
- ...now, after LHCb evidence for CPV in charm, there is no consensus anymore
- Thus, it is important to provide as much experimental information as possible

New results from CDF

- Time-integrated search for CP violation in $D^0 \rightarrow K_S \pi^+ \pi^-$
- $\Delta A_{CP}(D^0 \rightarrow h^+h^-)$ with full Run II data sample

CDF Run II preliminary

CP Violation in the $D^0 \rightarrow K_S \pi^+ \pi^-$ Decay

- In 6/fb of two-track trigger data we search for time-integrated CPV in the resonant substructures of the 3-body D⁰→K_Sπ⁺π⁻ decay
- First full Dalitz analysis at hadron collider, but also
- Model-independent bin-by-bin comparison of the D⁰ and D
 ⁰ Dalitz plots (Miranda method)

Dalitz fit description

5

- NN selection isolates ~350k D* \rightarrow D⁰(\rightarrow K_S $\pi^{+}\pi^{-}$) π^{+} + c.c. decays $\mathcal{L} = \text{Efficiency} \cdot |\mathcal{M}|^{2} + \text{Background}$
- $\mathcal{M} = a_0 \cdot e^{i\delta_0} + \sum_j a_j \cdot e^{i\delta_j} \cdot \mathcal{A}_j$ Separate/combined binned fit to $\frac{\chi^2/\text{NDF} = 1.45 \text{ (NDF}}{\text{+}\text{Data}} \begin{bmatrix} 5082 \text{ } & 7000 \\ & & & & \\ &$ D⁰ and D⁰ Dalitz plots + Data 18000 to search for CPV 7000 E GeV²/c g Fit Functi 16000 0.01 — Backgrou - Background 14000 5000 6000 12000 bel Candidates per 0.01 4000 5000 10000 Candidates 3000 8000 • Each asymmetry self 4000 6000 2000 normalized: no need to 4000 3000 1000 2000 worry about overall 2000 2.5 1.5 2.5 M²_{K⁰π} [GeV²/c⁴] $M^{2}_{\pi^{+}\pi^{-}}$ [G 1000 spurious effects - Background 0.0 14000 5000 Candidates per 2000 Candid Candidates per 12000 0.5 10000 8000 E 6000 F Isobar model to describe ³/₂ ⁶⁰⁰⁰ 4000**⊨** 1000 2000 5000 the resonance structures 1.5 2.5 1.5 $M^{2}_{k^{0}\pi^{-}}$ [GeV²/c⁴ 4000 1.2 ⊨ Efficiency taken from MC 3000 0.8 2000 0.6 background from mass 0.4 1000 0.2 sidebands 00 2.5 0.5 1.5 0.5 1.5 2.5 $M^2_{K^0_s \pi^{\pm}(RS)}$ [GeV²/c⁴] $M^{2}_{K^{0}\pi^{t}(WS)}$ [GeV²/c⁴]

Results

- Table lists asymmetries between sub-resonances fit fractions
 - Big improvement wrt previous results from CLEO (PRD 70, 091101 (2004))...
 - ...but still no hints for any CP violating effect
- The measured value for the overall integrated CP asymmetry is

CDF Run II preliminary

Resonance	$\mathcal{A}_{\mathrm{FF}}$ (CDF) [%]	$\mathcal{A}_{\mathrm{FF}}$ (CLEO) [%]
$K^{*}(892)^{-}$	$0.36 \pm 0.33 \pm 0.40$	$2.5 \pm 1.9 {}^{+1.5}_{-0.7} {}^{+2.9}_{-0.3}$
$K_0^*(1430)^-$	$4.0\pm2.4\pm3.8$	$-0.2 \pm 11.3 {}^{+8.6}_{-4.9} {}^{+1.9}_{-1.0}$
$K_2^*(1430)^-$	$2.9\pm4.0\pm4.1$	$-7\pm25{}^{+8}_{-26}{}^{+10}_{-1}$
$K^{*}(1410)^{-}$	$-2.3 \pm 5.7 \pm 6.4$	• • •
ho(770)	$-0.05 \pm 0.50 \pm 0.08$	$3.1 \pm 3.8 {}^{+2.7}_{-1.8} {}^{+0.4}_{-1.2}$
$\omega(782)$	$-12.6 \pm 6.0 \pm 2.6$	$-26 \pm 24 {}^{+22}_{-2} {}^{+2}_{-4}$
$f_0(980)$	$-0.4 \pm 2.2 \pm 1.6$	$-4.7 \pm 11.0^{+24.9}_{-7.4}{}^{+0.3}_{-4.8}$
$f_2(1270)$	$-4.0 \pm 3.4 \pm 3.0$	$34 \pm 51 {}^{+25}_{-71} {}^{+21}_{-34}$
$f_0(1370)$	$-0.5 \pm 4.6 \pm 7.7$	$18 \pm 10 {}^{+2}_{-21} {}^{+13}_{-6}$
$ \rho(1450) $	$-4.1 \pm 5.2 \pm 8.1$	•••
$f_0(600)$	$-2.7 \pm 2.7 \pm 3.6$	• • •
σ_2	$-6.8 \pm 7.6 \pm 3.8$	•••
$K^{*}(892)^{+}$	$1.0\pm5.7\pm2.1$	$-21 \pm 42 {}^{+17}_{-28} {}^{+22}_{-4}$
$K_0^*(1430)^+$	$12\pm11\pm10$	• • •
$K_2^*(1430)^+$	$-10\pm14\pm29$	• • •
$K^*(1680)^-$		$-36 \pm 19 {}^{+9}_{-35} {}^{+5}_{-1}$

 $A_{CP} (D^0 \rightarrow K_S \pi^+ \pi^-) = (-0.05 \pm 0.57 \text{ (stat.)} \pm 0.54 \text{ (syst.)})\%$

More information in <u>CDF Public Note 10654</u>

 Last year, using 5.9/fb of two-track trigger data, CDF produced the world's most precise measurement of CP asymmetries in 2-body D⁰ decays:

$$\begin{aligned} A_{CP}(D^{0} \rightarrow K^{+}K^{-}) &= (-0.24 \pm 0.22 \pm 0.09)\% \\ A_{CP}(D^{0} \rightarrow \pi^{+}\pi^{-}) &= (+0.22 \pm 0.24 \pm 0.11)\% \\ \Delta A_{CP} &= A_{CP}(K^{+}K^{-}) - A_{CP}(\pi^{+}\pi^{-}) = (-0.46 \pm 0.31 \pm 0.12)\% \\ (PRD 85, 012009 (2012)) \end{aligned}$$

 In late November LHCb reported a more precise measurement of ΔA_{CP}, showing first evidence for CP violation in charm decays measuring:

See next talk by A. Carbone
$$\Delta A_{CP}(LHCb) = (-0.82 \pm 0.21 \pm 0.11)\%$$
 (PRL 108, 111602 (2012))

• CDF difference compatible with LHCb but also with zero, insufficient resolution for a conclusive statement

$\Delta A_{CP}(D^0 \rightarrow h^+h^-)$ with full Run II dataset

- Measurement updated with full Run II data sample
- Analysis strategy unchanged but new selection has been designed to specifically improve the resolution on ΔA_{CP}
 - About twice more signal events used in the new measurement
 - Expect resolution competitive with LHCb

Analysis overview

• Detector asymmetries are kinematic dependent, cancellation works if π_s distributions are the same between KK and $\pi\pi$, make them equal by reweighting

Charm Decay Factory

Final result

CDF Run II preliminary

 $\Delta A_{CP} = [-0.62 \pm 0.21 \text{ (stat)} \pm 0.10 \text{ (syst)}]\%$

 New CDF result confirms LHCb result: S
 same resolution, <1σ difference in central value

 $\Delta A_{CP}(LHCb) = [-0.82 \pm 0.21 \pm 0.11]\%$

• When combining à la HFAG with other available measurements, no CPV point is at ${\sim}3.8\sigma$ and

 $\Delta A_{CP}^{dir} = (-0.67 \pm 0.16)\%$ $A_{CP}^{ind} = (-0.02 \pm 0.22)\%$

More information in CDF Public Note 10784 $\Delta A_{CP} CDF$ No CP violation $\equiv \Delta A_{CP} BABAR$ P-value = 8.04×10^{-5} $||||||| \Delta A_{CP}^{-1}$ Belle 2 ∆A_{CP} LHCb $A_{\Gamma} BABAR$ A_r Belle $\mathbf{0}$ 2-dim 68.27% CL -2 2-dim 95.45% CL 2-dim 99.73% CL 1-dim 68.27% CL -2 2 0 A^{ind} [%]

Conclusions

- CPV in charm became lately a very hot topic
- As shown today, CDF is positioned at the frontline of this effort
 - Best measurement of individual CPV asymmetries in D⁰→h⁺h⁻ and D⁰→K_Sπ⁺π⁻
 - Best measurement of ΔA_{CP}, which strongly supports evidence for CPV in charm previously seen by LHCb

Backup Slides

Miranda method

- Based on <u>PRD 80, 096006 (2009)</u>
- Consider the significance of per bin differences between D⁰ and D

 ⁰ Dalitz plots to look for large asymmetries:

$$\frac{N_{D^0} - N_{\bar{D^0}}}{\sqrt{N_{D^0} + N_{\bar{D^0}}}}$$

Single A_{CP} vs ΔA_{CP}

• To measure each single A_{CP} we need to compare raw asymmetries, A, of three event samples

D*-tagged D⁰→hh D*-tagged D⁰→Kπ Untagged D⁰→Kπ

$$\begin{split} A(hh^*) &= A_{CP}(hh) + \delta(\pi_s) \\ A(K\pi^*) &= A_{CP}(K\pi) + \delta(\pi_s) + \delta(K\pi) \\ A(K\pi) &= A_{CP}(K\pi) + \delta(K\pi) \end{split}$$

$$A_{CP}(hh) = A(hh^*) - A(K\pi^*) + A(K\pi)$$

• For ΔA_{CP} we need just two samples

$$\Delta A_{CP}(hh) = A(KK^*) - A(\pi\pi^*)$$

thus making the measurement easier and much more robust against second order effects which do not completely cancel in the linear combination of raw asymmetries

Soft pion's kinematic reweight

Systematics

Source	$\Delta A_{ m CP}$ [%]
Approximations in the suppression of detector-induced effects	0.009
Shapes assumed in fits	0.020
Charge-dependent mass distributions	0.100
Asymmetries from residual backgrounds	0.013
Total	0.103

- Intrinsically suppressed by data-driven method
- Major offenders: effects that impact differently D⁰/D
 ⁰ and K⁺K⁻/π⁺π⁻ final states, e.g. charge-dependent differences in signal/background D* mass shapes

The CDF II detector

- Central drift chamber (COT) in magnetic field
 - $\sigma(p_T)/p_T^2 \sim 0.15\%$ (GeV/c) $^{-1}$ (excellent tracking/mass resolution)
- Silicon detectors (L00+SVX+ISL) • I.P. resolution $\sim 40 \ \mu {\rm m}$ solenoid WHA TOF • Hadronic trigger (SVT) • Two displaced tracks with $p_T > 2 \text{ GeV/c}$ COT beampipe PHA CPR SVX **CDFII** CMP CSP ISL CLC PEM--PPR CSX: BSU CMX CMJ BMU-TSU CSP toroid (CSW) MNP đ MSK CMX (miniskirt) west east

CDF is not charge-symmetric

Direct and indirect CP violation

The time-integrated asymmetry receives contribution from both direct and indirect sources of CPV

Since flavour mixing parameters are small in the charm sector, at first order, the measured asymmetry is the linear combination of the two terms

$$A_{\rm CP}(h^+h^-) \approx A_{\rm CP}^{\rm dir}(h^+h^-) + \frac{\langle t \rangle}{\tau} A_{\rm CP}^{\rm ind}$$

where $\langle t \rangle / \tau$ is the mean value of the D^0 meson proper decay-time in unit of lifetimes

Assuming no large weak phases in the decay, the indirect component is *universal*, then

$$\Delta A_{\rm CP} = A_{\rm CP}(K^+K^-) - A_{\rm CP}(\pi^+\pi^-) = \Delta A_{\rm CP}^{\rm dir} + \frac{\Delta \langle t \rangle}{\tau} A_{\rm CP}^{\rm ind}$$