

IFAE 2012

Incontri di Fisica della Alte Energie

11-13 aprile 2012 Ferrara

Propaganda: BESIII at BEPCII

6 f₀(980) ~ a₀(980) mixing

$${ }^{{f c}}_{{f c}}$$
 η (1405) $ightarrow$ $f_{0}($ 980 $)\pi^{0}$

$$\sum$$
 J/ $\psi
ightarrow p\overline{p}$ and J/ $\psi
ightarrow$ nm

BEPCII: e^+e^- double ring collider

The **BESIII** detector

On April 14th 2009 BESIII finished accumulating the first large data set of more than 100 million ψ' events. This is the world's largest ψ' data set.

BEPCII reached a peak luminosity of 0.65×10³³ cm⁻² s⁻¹

IFAE 2012 - Ferrara 🌆 13 aprile 2012

BEPCII luminosity trend since startup

5

Physics at **BESIII/BEPCII**

- *R*_{had} and precision test of Standard Model
- Light hadron spectroscopy ($\phi f_0(980), \phi \pi^0, \dots$)
- Charm and charmonium physics
- Search for new physics / new particles
- au physics
- Precision measurements of CKM matrix elements

Physics Channels	Energy (GeV)	$\frac{\text{Luminosity}}{(10^{33} \text{ cm}^{-2} \text{ s}^{-1})}$	Events/year
$J\!/\psi$	3.10	0.6	1.0 × 10 ¹⁰
$ au^+ au^-$	3.67	1.0	$1.2 imes 10^7$
ψ'	3.69	1.0	$3.0 imes10^9$
$D^*\overline{D}^*$	3.77	1.0	$2.5 imes 10^{7}$
$D_s\overline{D}_s$	4.03	0.6	$1.0 imes 10^6$
$D_s^*\overline{D}_s+c.c.$	4.14	0.6	$2.0 imes10^{6}$

- *R*_{had} and precision test of Standard Model
- Light hadron spectroscopy ($\phi f_0(980), \phi \pi^0, \dots$)
- Charm and charmonium physics
- Search for new physics / new particles

Nonperturbative Quantum Chromodynamics

Physics Channels	Energy (GeV)	Luminosity $(10^{33} \text{ cm}^{-2} \text{ s}^{-1})$	Events/year
$J\!/\psi$	3.10	0.6	1.0 × 10 ¹⁰
$ au^+ au^-$	3.67	1.0	$1.2 imes 10^7$
ψ'	3.69	1.0	$3.0 imes10^9$
$D^*\overline{D}^*$	3.77	1.0	$2.5 imes 10^7$
$D_s\overline{D}_s$	4.03	0.6	$1.0 imes10^{6}$
$D_s^*\overline{D}_s$ +c.c.	4.14	0.6	$2.0 imes10^{6}$

The f₀(980) scalar meson at BESIII

IFAE 2012 - Ferrara 🌆 13 aprile 2012

The $q\overline{q}$ scalar nonet

Is the $f_0(980)$ (M = 980 MeV) an $n^{2S+1}L_J = 1^3P_0$ element of the scalar $q\bar{q}$ nonet of flavor SU(3)? $\int_{L}^{S_2} S = 1, L = 1$

Why its isovector partner $a_0(980)$ (M = 980 MeV) has similar mass and width?

IFAE 2012 - Ferrara 🌆 13 aprile 2012 🛛 BESIII, alcuni risultati

The $q\overline{q}q\overline{q}$ cryptoexotic scalar nonet

The mass hierarchy is inverted

There is f₀(980)-a₀(980) mass degeneracy

IFAE 2012 - Ferrara 🌆 13 aprile 2012

Studying $a_0(980)$ and $f_0(980)$ via their mixing

The isospin-one $a_0(980)$ and isospin-zero $f_0(980)$, degenerate in mass, couple to $K\overline{K}$

The common $K\overline{K}$ intermediate states mediate the isospin violating $a_0(980) \sim f_0(980)$ mixing

The proximity of the $K\overline{K}$ thresholds to the $f_0(980)/a_0(980)$ mass enhances the mixing amplitude $\mathcal{A}[a_0(980) \sim f_0(980)]$ and hence the isospin-violating effect

10

The amplitude $\mathcal{A}[a_0(980) \sim f_0(980)]$ is highly sensitive to the scalar mesons structure standard $q\bar{q}$ $q\bar{q}q\bar{q}$ tetraquark $K\bar{K}$ molecule $q\bar{q}g$ hybrid

$a_0(980) \sim f_0(980)$ mixing at **BESIII**: the channels

IFAE 2012 - Ferrara 🧖 13 aprile 2012

$a_0(980) \sim f_0(980)$ mixing at **BESIII**: the data

PRD83(2011)032003

$a_0(980) \sim f_0(980)$ mixing at **BESIII**

PRD83(2011)032003

13

With higher statistics BESIII will be able to significantly reduce the allowed region

$\eta(1405) \rightarrow f_0(980)\pi^0$ for the first time at BESIII

IFAE 2012 - Ferrara آ 13 aprile 2012

The meson η (1405) at **BESIII**

15

$\eta(1405)$ and isospin violation

The branching ratio of the J/ψ isospin-conserving decay in the $\eta \pi^0 \pi^0 \gamma$ final state via $\eta(1405)$ and $a_0(980)$ is

$$\mathsf{BR}[J/\psi \to \eta(1405)\gamma \to a_0\pi^0\gamma \to \eta\pi^0\pi^0\gamma] = (8.40 \pm 1.75) \times 10^{-5}$$

Assuming that the J/ψ isospin-violating decay in the $\pi^{0/+}\pi^{0/-}\pi^{0}\gamma$ final state proceeds mainly through the $f_0(980) \sim a_0(980)$ oscillation which occurs with a probability of the order of 0.6% we expect a branchig fraction

$$\mathsf{BR}\big[J\!/\psi\!\rightarrow\!\eta(1405)\gamma\!\rightarrow\!a_0\pi^0\gamma\!\sim\!f_0\pi^0\gamma\!\rightarrow\!\pi^{0/+}\pi^{0/-}\pi^0\gamma\big] = (5\pm1)\times10^{-7}$$

The BESIII measurement gives

$$\mathsf{BR}\big[J/\psi \to \eta(1405)\gamma \to f_0\pi^0\gamma \to \pi^{0/+}\pi^{0/-}\pi^0\gamma\big] = (2.2\pm0.3)\times10^{-5}$$

$\eta(1405)$ and the $f_0(980)$ lineshape

arXiv:1201.2737

$J/\psi \rightarrow p\overline{p} \text{ and } J/\psi \rightarrow n\overline{n}$ at BESIII

IFAE 2012 - Ferrara 🧖 13 aprile 2012

$J/\psi \rightarrow N\overline{N}$ Strong and electromagnetic amplitudes

The $J/\psi \rightarrow N\overline{N}$ decay is a very good test of pQCD

The 3 gluons in the **OZI-violating** strong amplitude just match the 3 $q\bar{q}$ pairs of the $N\bar{N}$ final state

The strong amplitudes for $J/\psi \to p\bar{p}$ and $J/\psi \to n\bar{n}$ are equal because the J/ψ has isospin zero

The strong amplitude $A_{3g}^N \equiv A_{3g}$ is real (\Leftarrow pQCD)

The $J/\psi \rightarrow N\overline{N}$ decay has a subdominant electromagnetic (EM) contribution: $J/\psi \rightarrow \gamma^* \rightarrow N\overline{N}$

The EM aplitude depends on the electric and magnetic form factors (ff) that describe the $\gamma^* N \overline{N}$ vertex

At the J/ψ mass the main contribution comes from the magnetic ff's that are almost real and:

$$G^p_M(M^2_{J/\psi})\simeq -G^n_M(M^2_{J/\psi})>0$$

$B(J/\psi ightarrow n\overline{n})/B(J/\psi ightarrow p\overline{p})$

Proton:
$$BR(J/\psi \to p\bar{p}) \sim |A_{\gamma}^{p} + A_{3g}|^{2} = |A_{\gamma}^{p}|^{2} + |A_{3g}|^{2} + 2 \operatorname{Re}[A_{\gamma}^{p*}A_{3g}]$$

Neutron: $BR(J/\psi \to n\bar{n}) \sim |A_{\gamma}^{n} + A_{3g}|^{2} = |A_{\gamma}^{p}|^{2} + |A_{3g}|^{2} - 2 \operatorname{Re}[A_{\gamma}^{p*}A_{3g}]$

BESIII preliminary results: $J/\psi \rightarrow p\overline{p}$, $n\overline{n}$

nn identification

$$\begin{array}{|c|c|c|c|c|c|c|c|} \hline & \mathsf{BR}(J/\psi \to n\overline{n}) = (2.07 \pm 0.01 \pm 0.17) \cdot 10^{-3} \\ & \mathsf{BR}(J/\psi \to p\overline{p}) = (2.112 \pm 0.004 \pm 0.031) \cdot 10^{-3} \\ \hline & \mathsf{BR}(J/\psi \to \rho\overline{p}) = (2.17 \pm 0.07) \cdot 10^{-3} \\ \hline & \mathsf{BR}(J/\psi \to \rho\overline{p}) = (2.17 \pm 0.07) \cdot 10^{-3} \\ \hline & \mathsf{BR}(J/\psi \to \rho\overline{p}) = (2.17 \pm 0.07) \cdot 10^{-3} \\ \hline & \mathsf{BR}(J/\psi \to \rho\overline{p}) = (2.17 \pm 0.07) \cdot 10^{-3} \\ \hline & \mathsf{BR}(J/\psi \to \rho\overline{p}) = (2.17 \pm 0.07) \cdot 10^{-3} \\ \hline & \mathsf{BR}(J/\psi \to \rho\overline{p}) = (2.17 \pm 0.07) \cdot 10^{-3} \\ \hline & \mathsf{BR}(J/\psi \to \rho\overline{p}) = (2.17 \pm 0.07) \cdot 10^{-3} \\ \hline & \mathsf{BR}(J/\psi \to \rho\overline{p}) = (2.17 \pm 0.07) \cdot 10^{-3} \\ \hline & \mathsf{BR}(J/\psi \to \rho\overline{p}) = (2.17 \pm 0.07) \cdot 10^{-3} \\ \hline & \mathsf{BR}(J/\psi \to \rho\overline{p}) = (2.17 \pm 0.07) \cdot 10^{-3} \\ \hline & \mathsf{BR}(J/\psi \to \rho\overline{p}) = (2.17 \pm 0.07) \cdot 10^{-3} \\ \hline & \mathsf{BR}(J/\psi \to \rho\overline{p}) = (2.17 \pm 0.07) \cdot 10^{-3} \\ \hline & \mathsf{BR}(J/\psi \to \rho\overline{p}) = (2.17 \pm 0.07) \cdot 10^{-3} \\ \hline & \mathsf{BR}(J/\psi \to \rho\overline{p}) = (2.17 \pm 0.07) \cdot 10^{-3} \\ \hline & \mathsf{BR}(J/\psi \to \rho\overline{p}) = (2.17 \pm 0.07) \cdot 10^{-3} \\ \hline & \mathsf{BR}(J/\psi \to \rho\overline{p}) = (2.17 \pm 0.07) \cdot 10^{-3} \\ \hline & \mathsf{BR}(J/\psi \to \rho\overline{p}) = (2.17 \pm 0.07) \cdot 10^{-3} \\ \hline & \mathsf{BR}(J/\psi \to \rho\overline{p}) = (2.17 \pm 0.07) \cdot 10^{-3} \\ \hline & \mathsf{BR}(J/\psi \to \rho\overline{p}) = (2.17 \pm 0.07) \cdot 10^{-3} \\ \hline & \mathsf{BR}(J/\psi \to \rho\overline{p}) = (2.17 \pm 0.07) \cdot 10^{-3} \\ \hline & \mathsf{BR}(J/\psi \to \rho\overline{p}) = (2.17 \pm 0.07) \cdot 10^{-3} \\ \hline & \mathsf{BR}(J/\psi \to \rho\overline{p}) = (2.17 \pm 0.07) \cdot 10^{-3} \\ \hline & \mathsf{BR}(J/\psi \to \rho\overline{p}) = (2.17 \pm 0.07) \cdot 10^{-3} \\ \hline & \mathsf{BR}(J/\psi \to \rho\overline{p}) = (2.17 \pm 0.07) \cdot 10^{-3} \\ \hline & \mathsf{BR}(J/\psi \to \rho\overline{p}) = (2.17 \pm 0.07) \cdot 10^{-3} \\ \hline & \mathsf{BR}(J/\psi \to \rho\overline{p}) = (2.17 \pm 0.07) \cdot 10^{-3} \\ \hline & \mathsf{BR}(J/\psi \to \rho\overline{p}) = (2.17 \pm 0.07) \cdot 10^{-3} \\ \hline & \mathsf{BR}(J/\psi \to \rho\overline{p}) = (2.17 \pm 0.07) \cdot 10^{-3} \\ \hline & \mathsf{BR}(J/\psi \to \rho\overline{p}) = (2.17 \pm 0.07) \cdot 10^{-3} \\ \hline & \mathsf{BR}(J/\psi \to \rho\overline{p}) = (2.17 \pm 0.07) \cdot 10^{-3} \\ \hline & \mathsf{BR}(J/\psi \to \rho\overline{p}) = (2.17 \pm 0.07) \cdot 10^{-3} \\ \hline & \mathsf{BR}(J/\psi \to \rho\overline{p}) = (2.17 \pm 0.07) \cdot 10^{-3} \\ \hline & \mathsf{BR}(J/\psi \to \rho\overline{p}) = (2.17 \pm 0.07) \cdot 10^{-3} \\ \hline & \mathsf{BR}(J/\psi \to \rho\overline{p}) = (2.17 \pm 0.07) \cdot 10^{-3} \\ \hline & \mathsf{BR}(J/\psi \to \rho\overline{p}) = (2.17 \pm 0.07) \cdot 10^{-3} \\ \hline & \mathsf{BR}(J/\psi \to \rho\overline{p}) = (2.17 \pm 0.07) \cdot 10^{-3} \\ \hline & \mathsf{BR}(J/\psi \to \rho\overline{p}) = (2.17 \pm 0.07) \cdot 10^{-3} \\ \hline & \mathsf{BR}(J/\psi \to \rho\overline$$

Phase between strong and EM amplitudes

$$\phi = \cos^{-1} \left[\frac{BR(J/\psi \rightarrow p\bar{p}) - A_{3g}^2 - (A_{\gamma}^p)^2}{2 A_{3g} A_{\gamma}^p} \right] = (88.7 \pm 8.1)^o$$
IFAE 2012 - Ferrara (1) 13 aprile 2012
BESIII, alcuni risultati

21

Initial State Radiation

ISR cross section $\frac{d^2\sigma}{dE_{\gamma}d\theta_{\gamma}} = \underbrace{W(E_{\gamma}, \theta_{\gamma})}_{\text{radiator function}} \underbrace{\sigma_{e^+e^- \rightarrow X_{had}}(q^2)}_{e^+e^- \text{ cross section}}$ **ISR** technique at fixed-energy machines yield the same observables of e^+e^- experiments with energy scan All q^2 at the same time \Rightarrow better control on systematics Detected ISR \Rightarrow full X_{had} angular coverage CM boost \Rightarrow at threshold: $\epsilon \neq 0$ and $\Delta E \sim 1$ MeV

The acceptance at large angle is equivalent to the one, **almost point-like**, in the forward-backward direction

A zero-degree radiative photon tagger will suppress most of the background due to misidentified $\pi^0\mbox{'s}$

 π^0 's are produced with high BR's by $c\overline{c}$ resonances

ZDD, the zero-degree detector

Each section is made of two modules, upper and lower, volume $14 \times 4 \times 6 \mbox{ cm}^3$ each

The empty 10 mm-wide slot between the upper and lower module geometrically suppresses the Bremsstrahlung background

The calorimeters are arrays of scintillating fibers (60% in volume) embedded in lead

The fibers are lined up along the *y* axis and read out from the upper or lower face

The modules are segmented in the xz plane the first layer has a thinner segmentation to have a better *x*-resolution

The signal is extracted and channeled to PM's through bundles of clear optical fibers

The ZDD Chronicles

• 01/2011-06/2011: construction and assembling of a ZDD station (two modules)

• 06/2011-08/2011: tests with cosmic rays and at the Frascati Beam Facility

 $\frac{\partial E}{F} = 12.4\%$ E = 450 MeV.

August 2011: installation of the first ZDD station in the East side region of BESIII

Final comments

Many other analyses:

- Precision measurement of the branching fractions of J/ $\psi \rightarrow \pi^+\pi^-\pi^0$ and $\psi' \rightarrow \pi^+\pi^-\pi^0$
- Search for a light Higgs-like boson A^0 in J/ψ radiative decays
- Search for η'_c decays into vector meson pairs
- Higher-order multipole amplitude measurement in $\psi(2S)
 ightarrow \gamma \chi_{c2}$
- Search for CP and P violating pseudoscalar decays into $\pi\pi$
- Observation of χ_{c1} decays into vector meson pairs $\phi\phi, \omega\omega$, and $\omega\phi$
- Study of χ_{cJ} radiative decays into a vector meson
- \odot Measurement of the matrix element for the decay $\eta^{\,\prime}
 ightarrow \, \eta \pi^+ \pi^-$
- Evidence for ψ' decays into gamma π^0 and $\gamma\eta$
- First observation of the decays $\chi_{ci} \rightarrow \pi^0 \pi^0 \pi^0 \pi^0$
- © ...

For the future

- **J**/ ψ and ψ' samples will increase by **one order of magnitude or more**
- Scan measurements will be performed around cc resonances and also at lower energies
- Hadronic cross section measurements with ISR (ZDD)
- Many results will be refined
- Rare processes will be accessible at level below 10⁻⁷
- More complex channels will be accessible