

MEASUREMENT OF TOTAL ZZ-->41 PRODUCTION CROSS SECTION AND LIMITS ON ANOMALOUS TRIPLE GAUGE COUPLINGS WITH THE ATLAS DETECTOR

Alberto Mengarelli (Università di Bologna & INFN)

Outline:

- Introduction to the measurement
- Analysis overview (Event selection, Background estimate, ZZ candidate distributions)
- ZZ Cross section result with 4.7 fb-1
- Limits on aTGC with 1 fb^{-1}
- Conclusions and future perspectives

INTRODUCTION

- ZZ production is a rare process but with clear signature and very low background
- Irriducibile background to the H->ZZ->41 channel
- · Stringent SM test of the structure of the electroweak sector
- Gluon-gluon fusion contributions is 6.3% of the cross section

Standard Model Production

SM Forbidden

Public results on the topic:

1 fb⁻¹ measurement: Phys. Rev. Lett. 108, 041804 (2012) <u>http://arxiv.org/abs/1110.5016</u> **4.7 fb⁻¹ measurement:** ATLAS-CONF-2012-026 <u>https://cdsweb.cern.ch/record/1430735</u>

ATLAS DETECTOR & OBJECT SELECTION

•All main ATLAS subsystems are used to perform the measurement

Muons

- Combine Muon Spectrometer tracks with Inner Detector tracks
- Kinematic acceptance: $|\eta| < 2.7$, pt >7 GeV

Electrons

- Combine electromagnetic clusters with Inner Detector tracks
- Kinematic acceptance: $|\eta| < 2.47$, pt > 7 GeV

- Apply requirements to leptons on ID track isolation, calorimeter isolation and longitudinal and transverse impact parameters to reject fake leptons
- Leading lepton must have pT > 25 (20) GeV for electrons (muons)

Alberto Mengarelli IFAE 2012, Ferrara

EVENT SELECTION

Display of a selected ZZ-> $\mu^+\mu^-\mu^+\mu^-$ event with m^{4µ} = 239.7 GeV and Pt^{4µ} = 22.0 GeV Trigger using single electron and muon triggers, with pT thresholds 18–22 GeV

Select events with exactly four leptons passing the object selection described previously

Form two same-flavour opposite-sign pairs, choosing the pairing which minimises sum of distances from Z mass: $|\mathbf{m}_{12} - \mathbf{m}_{z}| + |\mathbf{m}_{34} - \mathbf{m}_{z}|$

Both pairs required to be on-shell: $66 < m_2 < 116$ GeV

BACKGROUND ESTIMATE

•Main backgrounds are $Z - >|^{+|^{-}}$ with additional jets or photons, t- tbar, single-top and other diboson processes (WW, WZ). All involve one or more fake leptons

There are True Leptons (T) and objects that can Fake Leptons (F), with a probability f for the fake object to be identified as a lepton

We can measure the number of selected leptons (L) and number of lepton-like jets that fail one or two of the lepton ID cuts (J)

The background is:

$$N_{4\ell}^{\text{fake}} = N_{TTFF} \times f \times f + N_{TTTF} \times f$$

The estimated background is:

$$N_{4\ell}^{\text{fake}} = (N_{LLLJ} - N_{LLLJ}^{ZZ}) \times FF - N_{LLJJ} \times FF^2$$

Fake Factors FF, the ratio of "selected" leptons to "leptonlike" jets in data, are mesured using Z tag method

Final state Bkg(d.d.)	$eeee \\ 0.6^{+0.7}_{-0.6}_{-0.6}$	$\mu\mu\mu\mu$ < $0.3^{+0.5}_{-0.2}$	ееµµ 0.3 ^{+0.9+0.8} -0.3-0.3	$\frac{\text{combined}(\ell\ell\ell\ell)}{0.7^{+1.3+1.3}_{-0.7-0.7}}$	Good agreement between Data Driven and MC background
Bkg(MC)	0.3 ± 0.3	< 0.8	0.6 ± 0.6	1.0 ± 0.6	estimation

OBSERVED EVENTS

• Observed candidate events in 4.7 fb⁻¹ of data:

- 62 candidates:
 15 eeee 21 μμμμ 26 eeμμ
- Predicted background: 0.7^{+1.3} (stat) +^{1.3} (syst)
- Predicted signal (MC): 53.2 ±1.1 (stat) ± 1.9 (syst)
- Sherpa (LO) used for signal predictions, scaled to predicted cross section of MCFM (NLO)
 - Cross checked with Pythia and gg2ZZ and found to be consistent
- Dominant systematics arise from uncertainty on lepton identification efficiencies
 - Evaluate using Tag and Probe measurements on large samples of Z->11 events

Leading Z candidate: highest pT Z candidate

CANDIDATE DISTRIBUTIONS

- Invariant mass (left) and transverse momentum (right) of the four lepton system
- Good agreement between data and Monte-Carlo

ZZ->41 CROSS SECTION MEASUREMENT/1

 First we measure cross section in a fiducial phase space close to experimental selection

$$\sigma_{ZZ \to 41}^{fid} = \frac{N_{obs} - N_{bkg}}{L \cdot C_{ZZ}}$$

Channel			
eeee	$0.4661 \pm 0.0163 \pm 0.0361$		
μμμμ	$0.8097 \pm 0.0135 \pm 0.0158$		
ееµµ	$0.6036 \pm 0.0112 \pm 0.0232$		
1111	$0.6190 \pm 0.0160 \pm 0.0215$		

Fiducial region: - ZZ-> $I^{+}I^{-}I^{-}(I = e,\mu)$ - lepton Pt > 7 GeV - lepton $|\eta| < 2.7$ - Both Z: 66 < M₂ < 116 GeV

$$C_{ZZ} = \frac{N_{\text{Reconstructed } ZZ \rightarrow \ell \ell \ell' \ell'}^{\text{MC Pass All Cuts}} \times \text{SF}}{N_{\text{Generated } ZZ \rightarrow \ell \ell \ell' \ell'}^{\text{MC Fiducial Volume}}}$$

 First uncertainty is statistical, the second is systematics

•Systematics uncertainty is mostly due to e and mu recostruction ID and isolation efficiencies (~3.5%)

ZZ->41 CROSS SECTION MEASUREMENT/2

• Then we extrapolate to the total cross-section, correcting for the acceptance (A_{zz}) of the fiducial cuts estimated using the MCFM NLO generator and the Z->II branching ratios

$$\sigma_{ZZ}^{fid} = \frac{N_{obs} - N_{bkg}}{L \cdot C_{ZZ}}$$

$$\sigma_{ZZ}^{tot} = \frac{N_{obs} - N_{bkg}}{L \cdot BR(ZZ \rightarrow 4l) \cdot A_{ZZ} \cdot C_{ZZ}}$$

$$A_{ZZ} = \frac{N_{\text{Generated } ZZ \to \ell \ell \ell' \ell'}^{\text{MC Fiducial Volume}}}{N_{\text{Generated } ZZ \to \ell \ell \ell' \ell'}^{\text{MC All}}$$

Fiducial Volume is the same for each channel so A_{zz} is the same: $A_{zz} = 0.6484 \pm 0.0117$ (systematic uncertainty 1.8%)

$$\sigma_{ZZ \to \ell^+ \ell^- \ell^+ \ell^-}^{\text{fid}} = 21.2^{+3.2}_{-2.7} \text{ (stat)} {}^{+1.0}_{-0.9} \text{ (syst)} \pm 0.8 \text{ (lumi) fb}$$

$$\sigma_{ZZ}^{\text{tot}} = 7.2^{+1.1}_{-0.9} \text{ (stat)} {}^{+0.4}_{-0.3} \text{ (syst)} \pm 0.3 \text{ (lumi) pb}$$

Observed total cross section is consistent with the Standard Model cross section, calculated with MCFM and PDF set MSTW2008, of $6.5^{+0.3}_{-0.2}$ pb

Anomalous Triple Gauge Coupling (aTGC)

Search for general ZZV couplings where V = (Z,y), introduced using an effective Lagrangian

$$L = -\frac{e}{M_Z^2} [f_4^V(\partial_\mu V^{\mu\beta}) Z_\alpha(\partial^\alpha Z_\beta) + f_5^V(\partial^\sigma V_{\sigma\mu}) \tilde{Z}^{\mu\beta} Z_\beta]$$

- Couplings paramaterised by two CP-violating (f^v₄) nd two CP- conserving (f^v₅) complex parameters. All are zero in the SM
- Signature for aTGCs is enhanced cross section at high energies and large scattering angles => observables proportional to M^{ZZ} , P_{T}^{ZZ} sensitive to aTGCs

LIMITS ON aTGC (1 fb⁻¹)

- Limits on aTGCs set using $ZZ \rightarrow 41$ cross section measured with the first 1 fb⁻¹ of the 2011 dataset using the observed number of events only

- Limits are comparable with, or tighter than, those derived with measurements from LEP and the Tevatron

Coupling 95% CI	f_4^{γ}	f_4^Z	f_5^{γ}	f_5^Z
$\Lambda = 2 \text{ TeV}$	[-0.15, 0.15]	[-0.12, 0.12]	[-0.15, 0.15]	[-0.13, 0.13]
$\Lambda = \infty$	[-0.08, 0.08]	[-0.07, 0.07]	[-0.08, 0.08]	[-0.07, 0.07]

Conclusions and Future Perspectives

- ZZ cross section measurement provides a stringent SM test in the electroweak sector
- ZZ->41 cross section measurement with 4.7 fb⁻¹ of data using the ATLAS detector has been presented. Value obtained is consistent with SM prediction
- Limits on aTGC set using cross-section measured with 1 fb^{-1} statistics show no deviation from SM prediction
- Differential cross-section measurements
- Update aTGC using full 2011 dataset and differential distributions
- Push detector acceptance even further including forward electrons and calorimeter tagged muons