

Ricerca di "Dark Forces" @ KLOE

Ivano Sarra

Laboratori Nazionali di Frascati -INFN-Università di Roma2 TorVergata

IFAE 2012 - 12 Aprile 2012 -

Outline

• U boson production mechanisms

• Possible collider signatures

- U boson production in $\,\phi$ decays: KLOE-2 limit

Experimental results: U boson search

Recently astrophysical observations showed a unclear interpretation on Standard Model:

- PAMELA observed an excess in the positron fraction $(e^+/(e^+ + e^-))$,

- FERMI and ATIC have observed in cosmic ray data a large excess of electrons and positrons with energies between approximately 10 and 100 GeV

- Dark matter is a natural candidate for these: an O(GeV) spin-1 U-boson has been proposed to mediate the interaction among ordinary and dark matter
- Since no astrophysical data involves anomalous <u>production of antiproton</u>, the U boson mass (m_U) should be **less than the mass of two protons** [1].
- 2) The U boson can communicate with the SM through a kinetic mixing term describing the interaction of the U boson with SM photon. In this case the parameter ε should be less than about 10⁻².

$$e^{\gamma^*} \underbrace{\mathbf{U}}_{e^{\gamma^*}} \underbrace{$$

U boson: possible production mechanisms

- An interesting consequence of the existence of such a **light U boson** is that it can be directly produced at an accelerator, at fixed target experiments or high-luminosity e⁺ e⁻ colliders at the GeV.
- At flavor factories, e.g. at <u>DA Φ NE</u>, and present and future B-factories, a particularly clean and simple channel via the radiative reaction $e^+e^- \rightarrow U\gamma$, with subsequent decay of the U into a lepton pair.
- A further line of research also available at e^+e^- colliders is the **study of the decays of a vector meson into a pseudoscalar and a U**, as suggested by Reece and Wang [2]. In particular Reece and Wang have focused their attention on the channel $\phi(1020) \rightarrow U\eta$.
- A distinctive feature of the expected signal is the appearance of a Breit-Wigner peak in the shape of the invariant mass distribution of the lepton pairs over the standard continuous QED background.

Searching in $\phi ->\eta |+|$ Decays

• Meson having radiative decay to one photon can decay to a U boson with $BR(X \rightarrow YU) \sim \varepsilon^2 \times |FF_{XY\gamma}|^2 \times BR(X \rightarrow Y\gamma)$

$X \rightarrow YU$	n_X	$m_X - m_Y (MeV)$	$BR(X \to Y + \gamma)$	$BR(X \to Y + \ell^+ \ell^-)$	$\epsilon \leq$	
$\eta \rightarrow \gamma U$	$n_\eta \sim 10^7$	547	$2 \times 39.8\%$	6×10^{-4}	2×10^{-3}	Ar KLOE stat. All decay chains
$\omega \to \pi^0 U$	$n_\omega \sim 10^7$	648	8.9%	7.7×10^{-4}	5×10^{-3}	
$\phi \rightarrow \eta U$	$n_\phi \sim 10^{10}$	472	1.3%	1.15×10^{-4} (1×10^{-3}	
$K_L^0 \to \gamma U$	$n_{K_L^0} \sim 10^{11}$	497	$2\times(5.5\times10^{-4})$	9.5×10^{-6}	2×10^{-3}	
$K^+ \to \pi^+ U$	$n_{K^+} \sim 10^{10}$	354	-	2.88×10^{-7}	7×10^{-3}	
$K^+ \to \mu^+ \nu U$	$n_{K^+} \sim 10^{10}$	392	6.2×10^{-3}	7×10^{-8a}	2×10^{-3}	
$K^+ \rightarrow e^+ \nu U$	$n_{K^+} \sim 10^{10}$	496	$1.5 imes 10^{-5}$	$2.5 imes 10^{-8}$	7×10^{-3}	

[M.Reece and L.T.Wang, JHEP 0907:051 (2009)]

 \bullet σ(Φ → ηU) ≈ 40 fb for FF_{φη}≈1 and ε≈10⁻³

Selected decay chain: U $\rightarrow e^+e^-$ and $\eta \rightarrow \pi^+ \pi^- \pi^{+0}$ (BR = 22.7%) Published $\eta \rightarrow \gamma\gamma/\pi^0 \pi^0 \pi^0$ (BR = 39.3/32.6%) In Progress

The KLOE experiment

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Ivano Sarra - IFAE 2012 -

The
$$\phi
ightarrow \eta e^+ e^-$$
, $\eta
ightarrow \pi^+ \pi^- \pi^0$, decay

Analysis performed on 1.5 fb⁻¹

Ivano Sarra - IFAE 2012 -

Exclusion plot for number of events

- $\phi \rightarrow \eta U$ MC sample [M.Reece and L.T.Wang, JHEP 0907:051 (2009)] divided in subsamples of 1 MeV width in 5< M_U<470 MeV
 </p>
- ► For each M_U sub-sample, average value of $\phi \rightarrow \eta e^+ e^-$ background from fit to M_{ee} distribution, excluding the 5 bins centered at M_U
- For each M_U value, signal hypothesis excluded @ 90% C.L. using the CL_S method (error on bckg included)

Exclusion plot for α'/α

 $\alpha'/\alpha \le 2 \times 10^{-5}$ @ 90% C.L. for 50<M_U<420 MeV

Searching in $\phi - \gamma \gamma^*$ Decays N_{ARY} with <u>n -> 3</u> π^0

Analysis performed on 1.7 fb⁻¹

2 tracks (1 negative and 1 positive) in a cylinder around IP

➢ 6 photons candidates i.e. 6 energy clusters with E > 7 MeV not associated to any track, in an angular acceptance | cos θγ| < 0.92 and in the expected time window for a prompt photon (|T_γ − R_γ/c| < MIN(**3σ**_T, 2 ns))

Photon conversion + ToF cuts

Recoil mass to the e^+e^- pair

- $\sim 26000 \phi \rightarrow \eta e^+ e^- \text{ with } \eta \rightarrow 3\pi^0 \text{ candidates } (\sim 2 \text{ times } \eta \rightarrow \pi^+ \pi^- \pi^0)$
- > Small residual contamination from $\phi \rightarrow \eta \gamma$ and $\phi \rightarrow K_S K_L$ events

Possibility to compare the Mee shape and to extend/combine the upper limit.

Conclusions

- Several intriguing experimental hints suggest that a 'secluded world', with manifestation at low energies, could explain the puzzle of the dark matter
- KLOE/KLOE-2 experiments well suited for the search of the boson mediator of this dark force in a wide mass range and with different production mechanisms
- **X** The present KLOE result is through the $\phi \rightarrow \eta U$, $\eta \rightarrow \pi^+ \pi^- \pi^0$, decay, which allowed us to set a limit of:

$\alpha'/\alpha \le 2 \times 10^{-5}$ @ 90% C.L. for 50<M_U<420 MeV

➢ Progresses in other η decay channels show a large reconstruction analysis efficiency and a reduced background → possibility to extend/combine the upper limit.

References

- [1] L. Barzè, Light dark forces at flavor factories, 2011 J. Phys.: Conf. Ser. 335 012077, URL http://iopscience.iop.org/1742-6596/335/1/012077
- [2] M. Reece, L.T. Wang, JHEP 07, 051 (2009).

Spares

PAMELA observation of the antiproton flux

Electrons+positrons from Fermi/LAT (Abdo et al., PRL102,181101)

•ATIC peak not confirmed •spectrum compatible to E⁻³ with **mild** excess @ same energy of ATIC

•Flatness of spectrum disfavours interpretations of PAMELA in terms of a light Dark Matter particle (m \$450 GeV)

...their possible explanation

- All these observations do not have easy interpretations in terms of standard astrophysical and/or particle physics processes
- The simplest assumption [11] is to **add an extra U(1) symmetry to SM** symmetry group which describes a new dark force and suppose this force as carried by a new vector boson.
- Although SM particles are not charged under this new symmetry they can still couple with the "dark photon" (dubbed as A', or U in the literature) through the kinetic mixing mechanism with ordinary SM bosons, and specifically with the photon.
- With reactions involving WIMPs in the initial state and standard particles as positrons in the final state and supposing these reactions mediated by the U boson it would be possible to explain the experimental signals described.

U boson

- Since no astrophysical data involves anomalous production of antiproton, it is necessary to require the U boson mass (m_u) to be lower than the mass of two protons [10].
- It is possible to suppose also that U boson can communicate with the SM through a kinetic mixing term of the form [10]

$$L_{mix} = \frac{\varepsilon}{2} F_{\mu\nu}^{em} F_{dark}^{\mu\nu}$$

describing the interaction of the U boson with SM photon.

• In this case the parameter ϵ should be lower than about $10^{-2} - 10^{-3}$.

Search for dark forces @ KLOE

Meson decays: $\phi \rightarrow \eta U$, $\eta/\pi^0 \rightarrow U\gamma$...

Peculiar of a light meson factory

x-sec \propto 1/s

e+*e*⁻ collisions: *e*+*e*⁻→Uγ → ℓ+ℓ⁻γ

100 times higher at DA Φ NE w.r.t. b-factories Compensate lower luminosities

♦ *h*'-strahlung: $e^+e^- \rightarrow U^* \rightarrow Uh'$

If the hidden simmetry is spontaneously e^+ broken by a Higgs-like mechanism, the existence of at least one other scalar particle, the *h*', can be postulated e^- e^+

e

 l^+

U boson production mechanisms

1. The U boson can be produced in **e+e-** collisions via the radiative reaction **e+e-** \rightarrow **U** γ , with subsequent decay of the U into a lepton pair. e^+ l^-

If the two leptons are charged, it can be observed as a resonant peak of the lepton pair invariant mass distribution over the standard continuous QED background.

2. U bosons can be produced in electron collisions on a fixed target in a process analogous to ordinary bremsstrahlung.

In this case, production cross sections are much higher with respect to e+e- processes. However backgrounds, both from ordinary QED reactions and from possible beam related sources are also higher.

Analysis Performed

- Analysis performed on 1.7 fb⁻¹ (2004-2005 Data Taking)
- Comparison with MC:

1) Jaroslaw production (10 times the Data ~17 fb⁻¹) for the irreducible background:

Dalitz decay $\Phi \rightarrow \eta \gamma^* \rightarrow \eta e^+ e^-, \eta \rightarrow 3\pi^0$

2) all_phys production to estimate Bkg from "standard"
 Φ decays (3.2 fb⁻¹)

 Hit or Miss applied to JJ/Simona production according to the CosΨ* using the form factor parametrization from the SND experiment

Searching in $\phi - \eta + 1$ Decays with $\eta - 3\pi^0$

Recoil Mass (e⁺e⁻)

 \succ Events selected in a ~2 σ (6 MeV) window of the recoil mass, around the peak corresponding to n

Background rejection: photon conversions

Photon conversions on beam pipe (BP) or drift chamber walls (DCW), are rejected by tracing back the tracks of the two e⁺ e⁻ candidates and reconstructing their invariant mass (Mee) and distance (Dee) at the BP/DCW surfaces

Only BP cut is applied (Mee < 10 MeV && Dist BP < 2 cm)

Background rejection: photon conversions

Invariant Mass (e⁺e⁻): after conversions cut

Background rejection: Time Of Flight

A relevant background, originated by $\phi \rightarrow K_S K_L$ decays ($K_S - > \pi^+ \pi^-$ and $K_L - > 3\pi^0$) surviving analysis cuts, has more than two charged pions in the final state and is suppressed using time-of-flight of tracks to the calorimeter.

When an energy cluster is connected to a track, the arrival time to the calorimeter is evaluated both using the calorimeter timing $(T_{cluster})$ and the track trajectory $(T_{track} = L_{track}/\beta c)$. The $\Delta T = T_{track}-T_{cluster}$ variable is then evaluated in the electron (ΔTe) hypothesys

Background rejection: Time Of Flight -2-

Events with an e⁺ and e⁻ candidate outside a 3 σ 's window on the Δ Te variables are **rejected** (Δ Te < -0.8 && Δ Te > 0.6)

Invariant Mass (e⁺e⁻): after conversions & TOF cuts

Cuts summary and Efficiencies

Data-MC comparison summary

~26000 \$\phi\$→\$\eta\$e^+\$e^-\$ with \$\eta\$→\$3\$\pi^0\$ candidates (~2 times \$\eta\$→\$\pi^+\$\pi^-\$\pi^0\$)
 Small residual contamination from \$\phi\$→\$\eta\$\pi\$ and \$\phi\$→\$K_SK_L events
 MC M_{ee} shape with FF slope from SND (213 events) [PLB504(2001) 275]

Extract it directly from our data!

Ivano Sarra - IFAE 2012 -

Fit to the M_{ee} shape

Decay parametrization from L.G. Landsberg, Phys. Rep. 128 (1985) 301:

$$\frac{d}{dq^{2}} \frac{\Gamma(\phi \to \eta e^{+}e^{-})}{\Gamma(\phi \to \eta \gamma)} = \frac{\alpha}{3\pi} \frac{|F_{\phi\eta}(q^{2})|^{2}}{q^{2}} \sqrt{1 - \frac{4m^{2}}{q^{2}}} \times \left[\frac{1}{1 + \frac{2m^{2}}{q^{2}}} \right]^{2} \sqrt{1 - \frac{4m^{2}}{q^{2}}} \times \left[\frac{1}{1 - \frac{q^{2}}{q^{2}}} \right]^{2} \sqrt{1 - \frac{4m^{2}}{q^{2}}} \sqrt{1 - \frac{4m^{2}}{q^{2}}} \right]^{3/2} \times \left[\frac{\chi^{2}/\text{ndf} = 2.1}{2.8\% \text{ error on FF slope}} \right]^{3/2} \sqrt{1 - \frac{4m^{2}}{q^{2}}} \sqrt{1 -$$

34