### Flavour-Changing Decays of a 125 GeV Higgs-like Particle Based on: G.B., J. Ellis, G.Isidori arXiv:1202.5704

### **Gianluca Blankenburg**

Università degli Studi Roma Tre

### IFAE 2012 - Incontri di Fisica delle Alte Energie

# Outline

- The Higgs boson
  - Experimental situation
  - Higgs and flavor

- Plavor changing Higgs couplings
  - Low energy bounds
  - Higgs decay at LHC

ヘロン 人間 とくほとくほとう

Experimental situation Higgs and flavor

## Hints for the Higgs Boson

After winter conferences **several hints** for Higgs boson from ATLAS, CMS, CDF and D0

- excess in many channels:  $h \rightarrow \gamma \gamma$ ,  $h \rightarrow WW$ ,  $h \rightarrow ZZ$ ,  $h \rightarrow b\bar{b}$ ,  $h \rightarrow \tau \bar{\tau}$ 



Excluded region:  $122.5 < M_H < 127.5 \text{ GeV}$ 

### Is it the Standard Model Higgs?

イロト イポト イヨト イヨト

Experimental situation Higgs and flavor

### Discovering the properties

125 GeV Higgs is a particularly fortunate value for the LHC, because **many decay channels** are open for that mass



It is possible to test the Higgs in many channels and to **check if it** is exactly as in the **SM** 

(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

Experimental situation Higgs and flavor

# Higgs and flavor in the SM



 $\rightarrow$  when you diagonalize masses you <code>diagonalize Higgs-fermion</code> interactions



### Flavor Changing Neutral Currents are very suppressed

- loop suppressed
- mass (GIM) suppressed
- CKM suppressed

(日)

Experimental situation Higgs and flavor

# Higgs and flavor Beyond the SM

![](_page_5_Figure_3.jpeg)

Many **BSM models** predict **Flavor Changing** Higgs couplings

- multi Higgs dublets model (eg 2HDM in non decoupling limit)
- pseudo-dilaton (Goldberger et al '07)
- composite Higgs in which Yukawa are function of the Higgs field (Giudice et al '08)

(日)

S. Kraml et al., CERN-2006-009, hep-ph/0608079

...

Experimental situation Higgs and flavor

### Flavor Changing Higgs

![](_page_6_Figure_3.jpeg)

Which are the FC Higgs couplings allowed by the data?

![](_page_6_Figure_5.jpeg)

Gianluca Blankenburg Flavour-Changing Decays of a 125 GeV Higgs-like Particle

Bounds from  $\Delta F = 2$  processes

![](_page_7_Picture_4.jpeg)

| Operator                                                                                                         | Eff. couplings           | 95% C.L. Bound        |                               | Observables                                                                        |
|------------------------------------------------------------------------------------------------------------------|--------------------------|-----------------------|-------------------------------|------------------------------------------------------------------------------------|
|                                                                                                                  |                          | $ c_{eff} $           | $ \text{Im}(c_{\text{eff}}) $ |                                                                                    |
| $(\bar{s}_R d_L)(\bar{s}_L d_R)$                                                                                 | $c_{sd} c_{ds}^*$        | $1.1 \times 10^{-10}$ | $4.1 \times 10^{-13}$         | $\Delta \mathfrak{m}_{K}; \mathfrak{e}_{K}$                                        |
| $(\bar{s}_R d_L)^2$ , $(\bar{s}_L d_R)^2$                                                                        | $c_{ds}^{2}, c_{sd}^{2}$ | $2.2 	imes 10^{-10}$  | $0.8	imes10^{-12}$            |                                                                                    |
| $(\bar{c}_R u_L)(\bar{c}_L u_R)$                                                                                 | $c_{cu} c_{uc}^*$        | $0.9 \times 10^{-9}$  | $1.7 \times 10^{-10}$         | $\Delta \mathfrak{m}_{\mathrm{D}};  \mathfrak{q}/\mathfrak{p} , \phi_{\mathrm{D}}$ |
| $(\bar{c}_{R} u_{L})^{2}, \ (\bar{c}_{L} u_{R})^{2}$                                                             | $c_{uc}^2$ , $c_{cu}^2$  | $1.4 	imes 10^{-9}$   | $2.5 	imes 10^{-10}$          |                                                                                    |
| $(\bar{b}_R d_L)(\bar{b}_L d_R)$                                                                                 | $c_{bd} c_{db}^*$        | $0.9 	imes 10^{-8}$   | $2.7 \times 10^{-9}$          | $\Delta m_{B_d}; S_{B_d \to \psi K}$                                               |
| $(\bar{b}_{R} d_{L})^{2}, (\bar{b}_{L} d_{R})^{2}$                                                               | $c_{db}^{2}, c_{bd}^{2}$ | $1.0 	imes 10^{-8}$   | $3.0 \times 10^{-9}$          | u u i                                                                              |
| $(\bar{\mathbf{b}}_{\mathbf{R}} \mathbf{s}_{\mathbf{L}})(\bar{\mathbf{b}}_{\mathbf{L}} \mathbf{s}_{\mathbf{R}})$ | $c_{bs} c_{sb}^*$        | $2.0 \times 10^{-7}$  | $2.0 \times 10^{-7}$          | $\Delta m_{B_s}$                                                                   |
| $(\bar{b}_{R} s_{L})^{2}, (\bar{b}_{L} s_{R})^{2}$                                                               | $c_{sb}^{2}, c_{bs}^{2}$ | $2.2 \times 10^{-7}$  | $2.2 \times 10^{-7}$          | -                                                                                  |

+ similar bounds from rare B decays (B  $\rightarrow \mu^+ \mu^-)$ 

Bounds on FC Higgs coupling very strong:

it is impossible to see at LHC a FC Higgs decay into quarks

(日)

#### Low energy bounds Higgs decay at LHC

 $m_{\rm h} = 125 \, {\rm GeV}$ 

# Lepton sector: tree level

Three body decays and  $\mu \to e$  conversion in nuclei

| Operator                                               | Eff. couplings                                                 | Bound                    | Constraint                                                   |
|--------------------------------------------------------|----------------------------------------------------------------|--------------------------|--------------------------------------------------------------|
| $(\bar{\mu}_R e_L)(\bar{q}_L q_R), \dots$              | $ c_{\mu e} ^2,  c_{e\mu} ^2$                                  | $3.0 \times 10^{-8}$ [*] | $\mathcal{B}_{\mu \to e}(\mathrm{Ti}) < 4.3 \times 10^{-12}$ |
| $(\bar{\tau}_R  \mu_L)(\bar{\mu}_L \mu_R), \dots$      | $ c_{\tau\mu} ^2,  c_{\mu\tau} ^2$                             | $2.0 	imes 10^{-1}$ [*]  | $\Gamma(	au 	o \mu ar{\mu} \mu) < 2.1 	imes 10^{-8}$         |
| $(\bar{\tau}_{R} e_{L})(\bar{\mu}_{L} \mu_{R}), \dots$ | $ c_{\tau e} ^2$ , $ c_{e\tau} ^2$                             | $4.8 	imes 10^{-1}$ [*]  | $\Gamma(	au  ightarrow ear{\mu}\mu) < 2.7 	imes 10^{-8}$     |
| $(\bar{\tau}_{R} e_{L})(\bar{\mu}_{L} e_{R}), \dots$   | $ c_{\mu e}c_{e\tau}^* ,  c_{\mu e}c_{\tau e} $                | $0.9 \times 10^{-4}$     | $\Gamma(\tau  ightarrow \mu ee) < 1.5 	imes 10^{-8}$         |
| $(\bar{\tau}_{R} e_{L})(\bar{\mu}_{R} e_{L}), \dots$   | $ c_{e\mu}^* c_{e\tau}^* ,  c_{e\mu}^* c_{\tau e} $            |                          |                                                              |
| $(\bar{\tau}_R \mu_L)(\bar{e}_L \mu_R), \dots$         | $ c_{e\mu}c_{\mu\tau}^{*} ,  c_{e\mu}c_{\tau\mu} $             | $1.0 \times 10^{-4}$     | $\Gamma(	au 	o ar{e}\mu\mu) < 1.7 	imes 10^{-8}$             |
| $(\bar{\tau}_{R} \mu_{L})(\bar{e}_{R} \mu_{L}), \dots$ | $ c_{\mu e}^{*}c_{\mu \tau}^{*} ,  c_{\mu e}^{*}c_{\tau \mu} $ |                          |                                                              |

- $\blacktriangleright$  ...  $\rightarrow$  other possible operators of the same type but with different chiral structures
- [\*]  $\rightarrow$  assuming diagonal couplings as in the SM  $\rightarrow c_{\ell\ell} = y_{\ell} \equiv \frac{\sqrt{2}m_{\ell}}{v}$

Low energy bounds Higgs decay at LHC

# Lepton sector: 1 loop

logarithmically-divergent corrections to the lepton masses

$$\delta \mathfrak{m}_{\ell} = \frac{1}{(4\pi)^2} \sum_{j \neq \ell} c_{\ell j} c_{j\ell} \mathfrak{m}_j \log\left(\frac{\mathfrak{m}_h^2}{\Lambda^2}\right) \qquad \rightarrow \qquad |\delta \mathfrak{m}_{\ell}| < \mathfrak{m}_{\ell} \qquad (3)$$

anomalous magnetic moments and electric diapole moments ►

$$\begin{aligned} |\delta a_{\ell}| &= \frac{4m_{\ell}^2}{m_{h}^2} \frac{1}{(4\pi)^2} \sum_{j \neq \ell} \operatorname{Re}(c_{\ell j} c_{j \ell}) \frac{m_j}{m_{\ell}} \left( \log \frac{m_{h}^2}{m_j^2} - \frac{3}{2} \right) , \qquad (4) \\ |d_{\ell}| &= \frac{2m_{\ell}}{m_{h}^2} \frac{e}{(4\pi)^2} \sum_{j \neq \ell} \operatorname{Im}(c_{\ell j} c_{j \ell}) \frac{m_j}{m_{\ell}} \left( \log \frac{m_{h}^2}{m_j^2} - \frac{3}{2} \right) . \end{aligned}$$

Lepton Flavor Violating decays

$$\Gamma(l_{i} \to l_{j}\gamma) = m_{i}^{3} \frac{e^{2}}{16\pi} (|A_{ij}^{L}|^{2} + |A_{ij}^{R}|^{2})$$
(6)

with coefficients

$$|A_{\mu e}^{R}| = \frac{1}{(4\pi)^{2}} |c_{e\tau} c_{\tau\mu}| \frac{m_{\tau}}{m_{h}^{2}} \left( \log \frac{m_{h}^{2}}{m_{\tau}^{2}} - \frac{3}{2} \right), \quad |A_{\mu e}^{L}| \text{ for } c_{ij} \to c_{ji} (7)$$

$$|A_{\tau \ell}^{R}| = \frac{1}{(4\pi)^{2}} |c_{\ell\tau}| y_{\tau} \frac{m_{\tau}}{m_{h}^{2}} \left( \log \frac{m_{h}^{2}}{m_{\tau}^{2}} - \frac{4}{3} \right), \quad |A_{\tau \ell}^{L}| \text{ for } c_{ij} \to c_{ji} (8)$$
Gialact Blackaphere Element provided 125 GeV Higgs like Particle

#### Low energy bounds Higgs decay at LHC

### Lepton sector: 1 loop

![](_page_10_Picture_3.jpeg)

| Eff. couplings                                                                                               | Bound                                         | Constraint                                              |
|--------------------------------------------------------------------------------------------------------------|-----------------------------------------------|---------------------------------------------------------|
| $ c_{e\tau}c_{\tau e}   ( c_{e\mu}c_{\mu e} )$                                                               | $1.1 \times 10^{-2}$ $(1.8 \times 10^{-1})$   | $ \delta m_e  < m_e$                                    |
| $ \operatorname{Re}(c_{e\tau}c_{\tau e})   ( \operatorname{Re}(c_{e\mu}c_{\mu e}) )$                         | $0.6 \times 10^{-3}$ ( $0.6 \times 10^{-2}$ ) | $ \delta a_e  < 6 \times 10^{-12}$                      |
| $ \mathrm{Im}(\mathbf{c}_{e\tau}\mathbf{c}_{\tau e})   ( \mathrm{Im}(\mathbf{c}_{e\mu}\mathbf{c}_{\mu e}) )$ | $0.8 \times 10^{-8}$ ( $0.8 \times 10^{-7}$ ) | $ d_e  < 1.6 \times 10^{-27} \text{ ecm}$               |
| $ c_{\mu\tau}c_{\tau\mu} $                                                                                   | 2                                             | $ \delta \mathfrak{m}_{\mu}  < \mathfrak{m}_{\mu}$      |
| $ \operatorname{Re}(c_{\mu\tau}c_{\tau\mu}) $                                                                | $2 \times 10^{-3}$                            | $ \delta a_{\mu}  < 4 \times 10^{-9}$                   |
| $ \text{Im}(c_{\mu\tau}c_{\tau\mu}) $                                                                        | 0.6                                           | $ d_{\mu}  < 1.2 	imes 10^{-19}  m ~ecm$                |
| $ c_{e\tau}c_{\tau\mu} ,  c_{\tau e}c_{\mu\tau} $                                                            | $1.7 	imes 10^{-7}$                           | $\mathcal{B}(\mu \to e\gamma) < 2.4 \times 10^{-12}$    |
| $ c_{\mu\tau} ^2,  c_{\tau\mu} ^2$                                                                           | $0.9 	imes 10^{-2}$ [*]                       | $\mathcal{B}(\tau \to \mu \gamma) < 4.4 \times 10^{-8}$ |
| $ c_{e\tau} ^2,  c_{\tau e} ^2$                                                                              | $0.6 	imes 10^{-2}$ [*]                       | $\mathcal{B}(\tau \to e\gamma) < 3.3 \times 10^{-8}$    |

### Lepton sector: 2 loops

# Loop suppressed but proportional to only one lepton Yukawa (enanched)

![](_page_11_Picture_4.jpeg)

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

| Eff. couplings                                                                       | Bound                                            | Constraint                                                                                                                                  |                         |
|--------------------------------------------------------------------------------------|--------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|
| $ c_{e\mu} ^2$ , $ c_{\mu e} ^2$                                                     | $1 \times 10^{-11}$ [*]                          | $\mathcal{B}(\mu \to e\gamma) < 2.4 \times 10^{-12}$                                                                                        | m = 125  CeV            |
| $ c_{\mu\tau} ^2$ , $ c_{\tau\mu} ^2$<br>$ c_{\alpha\tau} ^2$ , $ c_{\tau\alpha} ^2$ | $5 \times 10^{-4}$ [*]<br>$3 \times 10^{-4}$ [*] | $\begin{array}{c} \mathcal{B}(\tau \to \mu \gamma) < 4.4 \times 10^{-8} \\ \mathcal{B}(\tau \to e \gamma) < 3.3 \times 10^{-8} \end{array}$ | $m_h = 125 \text{ GeV}$ |

### Conclusions

![](_page_12_Figure_3.jpeg)

- $\mathcal{B}(h \to q_i q_j) < \mathcal{B}(h \to b\bar{s}, \bar{s}b) < 4 \times 10^{-4}$
- $\mathcal{B}(h \to \tau \bar{\mu} + \bar{\mu} \tau) \to \mathcal{O}(10\%)$ 
  - CPV phases can be even O(1)
  - not unnatural couplings needed ( $|c_{\mu\tau}|, |c_{\tau\mu}| \stackrel{<}{{}_{\sim}} y_{\tau}$ )
  - if  $|c_{e\tau(\tau e)}/c_{\mu\tau(\tau\mu)}| < 10^{-2}$
- $\mathcal{B}(h \to \tau \bar{e} + \bar{e}\tau) \to \mathcal{O}(10\%)$ 
  - if neglgleble CPV phases (edms)
  - if  $|c_{\mu\tau(\tau\mu)}/c_{e\tau(\tau e)}| < 10^{-2}$
- the two before not togheter  $(\mu \rightarrow e\gamma)$
- $\mathcal{B}(h \to \bar{\mu}e + e\bar{\mu}) < 3 \times 10^{-9} (\mu \to e \text{ conversion and } \mu \to e\gamma)$

### To our experimental collegue:

consider these dedicated searches!!

# Thank you for the attention

ヘロン 人間 とくほとくほとう