

Incontri di Fisica delle Alte Energie Ferrara – April 11-13, 2012

Multi-strange particle production in Pb-Pb collisions at the LHC with ALICE

D. Colella (University and INFN Bari) for the ALICE Collaboration

Multi-strange baryons in HIC

 Strange particle production investigate properties of strongly interacting system Multi-strange special probe of the early stages of the collision Strangeness enhancement wrt pp Signature of the QGP Observed at SPS/RHIC energies \checkmark Trend with $\sqrt{s_{NN}}$ to be confirmed/further understood • yields in A-A and p-p collisions at LHC energies would provide additional constraints from ALICE data

Particle identification

Multi-strange baryons in ALICE

- reconstructed via their (cascade) decay topology in Inner Tracking System and Time Projection Chamber
- specific ionization (in the TPC) used to identify daughters
- during event reconstruction, Cascade candidates founded combining reconstructed tracks and applying loose cuts on geomentry and kinematics
- cuts are tightened to reduce background at the analysis level

Topological cuts

Cuts on geometry and kinematics for cascade and V0 reconstruction

Max radius of fiducial volume (cm)

Cuts for cascades	Loose reconstruction Tuned for analy		
Max allowed χ^2	33.	33.	
Min allowed V0 DCA (cm)	0.05	0.1	
Window around V0 mass (MeV/c ²)	0.008	0.005	
Min allowed bachelor DCA (cm)	0.03	3 0.03	
Max allowed DCA cascade daughters (cm)	0.3 0.3		
Min allowed cosine of cascade PA	0.999 0.9993		
Min radius of the fiducial volume (cm)	0.9	1.5	
Max radius of the fiducial volume (cm)	100. 100.		
Window around $M(\Lambda,\pi)$ for Ω (GeV/c ²)	- 0.008		
Cuts for V0s	Loose reconstruction	Tuned for analysis	
Max allowed χ^2	33.	33.	
Min allowed DCA for 1° daughter (cm)	0.1	0.1	
Min allowed DCA for 2° daughter (cm)	0.1	0.1	
Max allowed DCA daughter tracks (cm)	1.0 0.6		
Min allowed cosine of V0 PA	0.998 0.998		
Min radius of fiducial volume (cm)	0.9	4.0	

100.

100.

Towards signal extraction

Ξ mass from PDG: 1.321 GeV/c²

Ω mass from PDG: 1.672 GeV/c²

NFN

di Fisica Nucleare

Towards signal extraction

Ω mass from PDG: 1.672 GeV/c²

di Fisica Nucleare

First Pb-Pb data taking
✓ end of 2010
✓ √s_{NN} = 2.76 TeV
✓ about 30M nuclear interaction MB triggers collected
✓ about 20M events selected for this analysis

Transverse momentum spectra in |y|<0.5

Ferrara - April 12, 2012

Transverse momentum spectra in |y|<0.5

Ratios anti-particle/particle in agreement with 1 (as expected at the LHC energies)

Transverse momentum spectra in |y|<0.5

D. Colella

 $Yield_{PbPb} / < N_{part} >$

 $Yield_{pp}$ / 2

E =

Strangeness enhancement

Enhancements in lyl<0.5

ALICE

Ferrara - April 12, 2012

Summary

- Ξ s and Ωs in Pb-Pb collisions at $\sqrt{s_{NN}} = 2.76$ TeV:
- ✓ 30M minimum bias nuclear interactions from 2010 run
- \checkmark mid-rapidity p_T spectra (and yields) measured
 - very good p_T reach (up to 6-9 GeV/c)
 - o as a function of collision centrality (4 centrality classes)
- preliminary results
 - enhancements wrt pp collisions → confirmed hierarchy based on the strangeness content of the particle
 - comparison with lower energy data → enhancements decreasing as energy increases (same trend observed between SPS and RHIC)

Outlook

 \checkmark working for final results: finer centrality bins and lower min-p_T's

Backup slides

Event selection criteria

Event and track selections

- background events rejection (beam-background and electromagnetic interactions)
- ✓ 90% most central events
- ✓ vertex in |z|<10 cm
- quality cuts for tracks

ALICE

- 3.9 cm<r<43 cm
- D. Colella

Efficiency correction

Main ingredients:

Monte Carlo HIJING with injected cascade
 o about 3M events generated
 o one Ξ/Ω per species/event

Geant-Fluka correctioninterpolation with a cubic spline

Efficiency correction

Main ingredients:

Monte Carlo HIJING with injected cascades
 o about 3M events generated
 o one Ξ/Ω per species/event

Geant-Fluka correctioninterpolation with a cubic spline

Performance

18/09/2011

5

6

2 0

3

4

60-90%

p_{_} (GeV/c)

Yields from blast wave fits

- For the yields we use the data where we have them; over we need to extrapolate.
 Blast Wave parametrization:
 - gives the best fit to individual particles
 - from PHOBOS we have evidence that this paramerization gives a good description to very low p_t

Blast wave is an hydrodynamically inspired model, which assumes a transversely expanding emission source. The parameters of this model are the kinetic freeze-out temperature T and the transverse flow velocity β_T . Assuming a linear radial velocity profile, the spectrum can be computed from:

$$\frac{1}{m_T}\frac{dN}{dm_T} \propto \int_0^R r dr I_0\left(\frac{p_T \sinh\rho}{T}\right) K_1\left(\frac{m_T \cosh\rho}{T}\right); \qquad \rho = \tanh^{-1}\beta_r$$

D. Colella

Main sources checked

- topological cuts:
 - use 3 different sets of cuts (looser and tighter)
- signal extraction procedure:
 - vary the window for signal estimation (2.5 and 4 sigmas vs 3)
 - enlarge the windows for bkg estimation
 - vary the method for bkg estimation (bin counting vs fit)
- > efficiency correction:
 - use histogram point (larger p_T-bins) instead of interpolation
 - use centrality bin different wrt data

	Yield 王	ΔY/Y (%)	Yield Ω	ΔΥ/Υ (%)
Standard analysis 0-20%	3.00201	-	0.588797	-
Loose cuts	2.98463	-0.6	0.592346	+0.6
Tight cuts	3.07891	+2.6	0.593405	+0.8
Very tight cuts	3.12095	+3.9	0.585960	-0.5
$M(\Lambda,\pi)$ cut for Ω	-	-	0.600859	+2.0
NO WEIGHTING of gen and acc	2.93121	-2.4	0.583435	-0.9
4-sigma window in signal extraction	2.99851	-0.1	0.572497	-2.8
2.5-sigma window in signal extraction	2.97201	-0.9	0.596949	+1.4
Background by bin counting in signal extraction	2.99897	-0.1	-	-
8-sigma window for background in sign extract	3.03588	+1.1	0.586520	-0.4
Corrected with efficiency histo (no spline)	2.86200	-4.7	0.595412	+1.1
Corrected with efficiency in 10-30%	2.67271	-10.9	0.573613	-2.6
Shift pt-bin position	3.00159	10-4	0.622394	+5.7
Standard analysis 20-40%	1.63339	-	0.239420	-
Corrected with efficiency histo (no spline)	1.55103	-5.0	0.233368	-2.5
Corrected with efficiency in 30-50%	ara 1.4798 4 - 2	¹² -9.4	0.216540	-9.5

D. Colella