Jets produced in association with W and Z bosons in CMS

IFAE 2012
Ferrara, April 11-13

Andrea Schizzi
Università degli Studi di Trieste, INFN

On behalf of the CMS Collaboration
A study of W/Z production in association with jets in proton-proton collisions at $\sqrt{s} = 7$ TeV is presented. The results are obtained with data collected by the CMS experiment over the 2010 LHC run, corresponding to an integrated luminosity of about 36 pb$^{-1}$, and have been published in [1].

Outline of the talk:

- Event selection and jet reconstruction.
- Signal yields extraction.
- Efficiencies measurement.
- Main results: jet multiplicity exclusive cross sections, W/Z ratio.

The reason for $W/Z + \text{Jets}$...

Processes involving QCD + EWK physics with jets, leptons and missing E_T in final states.

Calculations are very difficult:

- NLO calculations: available up to 3 (Z) and 4 (W) jets.
- Matrix element + parton shower (common used tool): tree level only.

High theoretical uncertainties: cross-check with data is an important test for Standard Model!

Major background to many searches for new physics!
The CMS detector

ECAL (EB+EE):
- \(\sim 75000 \) PbWO\(_4\) crystals
- energy resolution \(\sim 0.5\% \) at 100 GeV

Superconducting solenoid generating 3.8 T magnetic field

HCAL (HB+HE+HO):
- lead and plastic scintillator sampling calorimeter
- energy resolution \(\sim 5\% \) at 100 GeV

Muon detector:
- consisting of drift tubes (DT), cathode strip chambers (CSC) and resistive plate chambers (RPC).

Tracker:
- made of pixel and micro-strip detectors.
- spatial resolution ranging from 10\(\mu \)m to 30\(\mu \)m.
- Acceptance: \(|\eta| < 2.4 \).
Event selection: $Z \rightarrow \text{ee}$

Events selected in 2010 dataset ($\sim 36 \, \text{pb}^{-1}$) using the lowest unprescaled single electron trigger: p_T threshold varying from 10 to 17 GeV depending on instantaneous luminosity.

Leading electron:
- transverse momentum: $p_T > 20$ GeV.
- acceptance: $|\eta| < 1.44$ (barrel), or $1.56 < |\eta| < 2.5$ (endcaps).
- matched to trigger candidate.
- **tight** cuts ($\sim 80\%$ efficiency) on lepton isolation, identification and conversion rejection variables.

Sub-leading electron:
- transverse momentum: $p_T > 10$ GeV.
- Acceptance: $|\eta| < 1.44$ (barrel), or $1.56 < |\eta| < 2.5$ (endcaps).
- **loose** cuts ($\sim 95\%$ efficiency) on lepton isolation, identification and conversion rejection variables.

$60 \, \text{GeV} < m_{\text{ee}} < 120 \, \text{GeV}$

The event is classified as $Z \rightarrow \text{ee}$
Event selection: $W \rightarrow ev$

Events selected in 2010 dataset (~36 pb$^{-1}$) using the lowest unprescaled single electron trigger: p_T threshold varying from 10 to 17 GeV depending on instantaneous luminosity.

Leading electron:
- transverse momentum: $p_T > 20$ GeV.
- acceptance: $|\eta| < 1.44$ (barrel), or $1.56 < |\eta| < 2.5$ (endcaps).
- matched to trigger candidate.
- **tight** cuts (~80% efficiency) on lepton isolation, identification and conversion rejection variables.

Sub-leading electron:
- transverse momentum: $p_T > 10$ GeV.
- Acceptance: $|\eta| < 1.44$ (barrel), or $1.56 < |\eta| < 2.5$ (endcaps).
- **loose** cuts (~95% efficiency) on lepton isolation, identification and conversion rejection variables.

$\slashed{m}_T > 20$ GeV and no additional muons (top veto)

The event is classified as $W \rightarrow ev$
Event selection: $Z \rightarrow \mu\mu$

Events selected in 2010 dataset (~36 pb$^{-1}$) using the lowest unprescaled single muon trigger: p_T threshold varying from 9 to 15 GeV depending on instantaneous luminosity.

Leading muon:
- transverse momentum: $p_T > 20$ GeV.
- acceptance: $|\eta| < 2.1$.
- matched to trigger candidate.
- well isolated and satisfying quality criteria to avoid muons from secondary decays.

Sub-leading muon:
- transverse momentum: $p_T > 10$ GeV.
- acceptance: $|\eta| < 2.4$ (barrel).
- well isolated and satisfying quality criteria to avoid muons from secondary decays.

60 GeV $< m_{\mu\mu} < 120$ GeV

The event is classified as $Z \rightarrow \mu\mu$
Event selection: $W \rightarrow \mu \nu$

Events selected in 2010 dataset (~36 pb$^{-1}$) using the lowest unprescaled single muon trigger: p_T threshold varying from 9 to 15 GeV depending on instantaneous luminosity.

Leading muon:
- transverse momentum: $p_T > 20$ GeV.
- acceptance: $|\eta| < 2.1$.
- matched to trigger candidate.
- well isolated and satisfying quality criteria to avoid muons from secondary decays.

Sub-leading muon:
- transverse momentum: $p_T > 10$ GeV.
- acceptance: $|\eta| < 2.1$.
- well isolated and satisfying quality criteria to avoid muons from secondary decays.

$m_T > 20$ GeV

The event is classified as $W \rightarrow \mu \nu$
Jet reconstruction

- Clusterization algorithm: $\textit{anti-}k_T$ (cone size $\Delta R = 0.5$) applied to Particle Flow candidates. Isolated leptons removed from jet collection.
- Acceptance: $|\eta| < 2.4$ (i.e. tracker acceptance).
- Transverse momentum: $p_T > 30$ GeV.
- Jet energy is calibrated to remove detector effects (JEC).
- Pile-up contribution to jet energy removed via FastJet algorithm.

Data is compared to MadGraph simulation, scaled to NNLO cross section.
Signal extraction

Both signal yields estimated with un unbinned ML fit to the M_{ll} distribution (Z+Jets sample) and to the M_T distribution (W+Jets sample).

Z+Jets sample:
- background (mainly W+Jets and t-tbar) is very low and non-peaking: exponential parametrization.
- Z peak signal: asymmetric gaussian parametrization.

W+Jets sample:
- heavy background from t-tbar and QCD.
- 2-dimensional fit to the M_T and # of b-tagged jet distributions.

more details in the poster: “Study of W and jets associated production with CMS”-S. Gonzi
Efficiencies

Efficiencies are measured as a function of \# jets, with a data-driven Tag&Probe method on a sample of Z candidates.

Contributions to the global efficiency:

- High Level Trigger (only one leg)
- Reconstruction process
- Offline selection

\[
\epsilon_{\text{tot}} = \epsilon_{\text{HLT}} \times \epsilon_{\text{RECO}} \times \epsilon_{\text{Offline}}
\]

Signal yields are extracted from the distribution of events with a passing probe and a failing probe:

Simultaneous fit, with the efficiency as a floating parameter:

\[
\epsilon = \frac{n_{\text{passing}}}{n_{\text{passing}} + n_{\text{failing}}}
\]

Left tail parameter of signal distribution is estimated from simulations. For \# jets > 2 multiplicity bins (few statistics), use parameters estimated from lower jet multiplicities.
Results: Z + Jets

Exclusive cross sections as a function of the number of associated jets: all the results are presented in terms of ratios, in order to reduce systematics.

- Yields corrected with efficiencies calculated on data and unfolded to remove detector effects.
- Results are compared with PYTHIA (PS only) and PYTHIA+MadGraph (ME+PS)
Results: $W + \text{Jets}$

- Yields corrected with **efficiencies** calculated on data and **unfolded** to remove detector effects.
- Results are compared with **PYTHIA** (PS only) and **PYTHIA**+**MadGraph** (ME+PS).

- Similar results to $Z + \text{Jets}$: worse sample purity is compensated by higher statistics.
- Matrix element calculation yields a good agreement with data: scaling between exclusive jet multiplicity cross sections is well behaved.
Jet multiplicity exclusive cross sections are used to test scaling hypothesis:

$$\frac{\sigma (V + (\geq n) \text{ Jets})}{\sigma (V + (\geq n-1) \text{ Jets})} = \alpha + \beta \times n$$

(“Berends-Giele scaling”)

both with $W + \text{Jets}$ cross sections and $Z + \text{Jets}$ ones.

β is consistent with zero within uncertainties:

\textbf{no violation to the expected scaling.}
Results: W/Z ratio

Cross sections measured from W+Jets and Z+Jets samples are used to calculate the ratio:

\[
\frac{\sigma(W + (\geq n)\text{Jets})}{\sigma(Z + (\geq n)\text{Jets})}
\]

- Event selection needs to be consistent between the W and Z (first leg) candidates.
- W/Z ratio is independent from the jet multiplicity.

Good agreement with Standard Model predictions!
Conclusions

In this talk:

- Most relevant steps of the W/Z + Jets event selection and analysis.
- Main results with 2010 dataset (≈36 pb$^{-1}$): many other interesting measurements have been done.

(e.g. dedicated poster: “Measurements of associated production of vector bosons and heavy flavours with the CMS detector” - S. Casasso)

In the future:

- Exciting new results are expected with 2011(-2012) data: differential cross sections, angular correlations, etc. etc.
- Fascinating new challenges expected with the analysis of 2011(-2012) data (high luminosity and pile-up, complex triggers...): stay tuned!