

Risultati recenti sulla violazione di CP nei decadimenti del B⁰_s

Marta Calvi (Università di Milano Bicocca e INFN) LHCb Collaboration

CPV nel B_s e Nuova Fisica

- La differenza di fase tra il decadimento del B_s con e senza mixing, non conserva CP.
- Nel Modello Standard:

$$\mathsf{con} \ \beta_{\mathrm{s}} = \mathrm{arg}\left(-\frac{V_{\mathrm{ts}}V_{\mathrm{tb}}^{*}}{V_{\mathrm{cs}}V_{\mathrm{cb}}^{*}}\right)$$

 $B_{s}^{0} \xrightarrow{\phi_{D}} J/\psi\phi$ $\phi_{M} \xrightarrow{\bar{B}_{s}^{0}} -\phi_{D}$

 $\phi_{s} = \Phi_{M} - 2\Phi_{D}$

J.Charles et al

molto piccola e calcolata precisamente: $2\beta_s = 0.036 \pm 0.002 \text{ rad} PRD84(2011)$

 $\phi_s^{SM} \cong -2\beta_s$

- Contributi aggiuntivi di diagrammi a pinguino in $B_s \rightarrow J/\psi \phi \sim 10^{-4} 10^{-3}$
- La presenza di nuove particelle nel diagramma a box può dar luogo ad una fase aggiuntiva:
 b V_{tb} t V^{*}_{ts} s

$$\phi_s = \phi_s^{SM} + \phi^{NP}$$

• Una misura di ϕ_s "grande" è segnale chiaro di nuova fisica

$\phi_s \text{ da } B_s \rightarrow J/\psi(\mu\mu)\phi(KK)$ al Tevatron

- Run II completato il 30/11/2011, ricchissima produzione di risultati nella Fisica del Flavour, analisi di tutti i dati in arrivo.
- Aggiornamento di D0 su ϕ_s a 8 fb⁻¹ ·
- Aggiornamento di CDF su ϕ_s a 9.6 fb⁻¹ \rightarrow talk di L. Sabato

LHCb: run 2011

- Livellamento della Luminosità istantaneo a LHCb tramite separazione verticale dei fasci.
- $<L> \sim 2.7 \times 10^{32} \text{ cm}^{-2} \text{s}^{-1}$ superiore al valore di disegno.
- Pile-up (numero interazioni pp visibili per bunch crossing) ~1.6
- Efficienza DAQ ~ 91%, efficienza del rivelatore ~99%.
- Output HLT: ~1kHz beauty, ~1kHz charm, ~1kHz altro
- LHC & LHCb ripartiti con successo nel 2012!

 B_s→J/ψ KK stato finale con componenti CP-pari e CP-dispari, richiede analisi angolare per poterle distinguere

KK in P-wave: ampiezze $A_{\perp}(t)$, $A_{\prime\prime}(t)$, $A_{0}(t) \rightarrow CP$ -dispari o CP-pari KK in S-wave: ampiezza $A_{S}(t) \rightarrow CP$ -dispari

 $\frac{d^{4}\Gamma(B_{s}^{0} \rightarrow J/\psi \phi)}{dt \, d\Omega} \propto \sum_{k=1}^{10} h_{k}(t) f_{k}(\Omega)$ $h_{k}(t) = N_{k}e^{-\Gamma_{s}t} \left[c_{k}\cos(\Delta m_{s}t) + d_{k}\sin(\Delta m_{s}t) + a_{k}\cosh\left(\frac{1}{2}\Delta\Gamma_{s}t\right) + b_{k}\sinh\left(\frac{1}{2}\Delta\Gamma_{s}t\right)\right]$ 10 parameteri fisici $\phi_{s} = (\Gamma_{L} + \Gamma_{H}) / 2 = \tau_{Bs}^{-1} \quad (\text{ per i due autostati di massa } B_{L} \in B_{H})$ $\Delta m_{s} = M_{H} - M_{L}$ 3 rapporti di ampiezze
3 differenze di fase forti

$\phi_s \text{ da } B_s \rightarrow J/\psi \phi \text{ ad LHCb}$

- Fondamentalmente si misura: $sin(\phi_s)sin(\Delta m_s t) \times D(\sigma_{time}) \times (1-2\omega_{tag})$
 - \rightarrow cruciali: risoluzione temporale, flavour tagging
- Nuova misura LHCb su 1fb⁻¹ (tutto 2011)
- Selezione segnale "cut based": 21.200 eventi con t>0.3ps, molto puliti.
- Risoluzione temporale evento per evento, calibrata sui dati con J/ψ→μμ
 risoluzione effettiva: σ_{time}~45 fs

J/ψ

B.

Flavour Tagging a LHCb

- Separazione di B⁰ e \overline{B}^0 necessaria per sensibilità a ϕ_s
- "Opposite Side Tagging": sfrutta la produzione pp→bb e i decadimenti del b opposto: semileptonici, b→c→K, e ricostruzione inclusiva di vertici secondari
- Nel fit probabilità di mistag per evento, calcolata da NNet. Calibrata sui dati con diversi canali di controllo (→poster A.Falabella)
- Tagging power per $B_s \rightarrow J/\psi \phi$: $\epsilon (1-2\omega_{tag})^2 = (2.29 \pm 0.07 \pm 0.26)\%$

Fit con 1fb⁻¹

M.Calvi	. IFA	E201	2

• $\Delta m_s = 17.63 \pm 0.11 \text{ ps}^{-1}$ vincolato alla misura di LHCb in $B_s \rightarrow D_s \pi$, ma è possibile misurare Δm_s anche in questo stesso fit.

• Soluzione con $\Delta\Gamma_s$ > 0:

$$\begin{split} \Gamma_{\rm s} &= 0.658 \pm 0.005 \ ({\rm stat}) \pm 0.007 \ ({\rm syst}) \ \ {\rm ps^{-1}} \\ \Delta \Gamma_{\rm s} &= 0.116 \pm 0.018 \ ({\rm stat}) \pm 0.006 \ ({\rm syst}) \ \ {\rm ps^{-1}} \\ \varphi_{\rm s} &= -0.001 \pm 0.101 \ ({\rm stat}) \pm 0.027 \ ({\rm syst}) \ \ {\rm rad} \end{split}$$

$\phi_s \text{ da } B_s \rightarrow J/\psi \phi$: visione globale

- Prossimo update LHCb:
 - Aumento event yield: selezione eventi con analisi multivariata, ampliamento linee di trigger usate.
 - Aggiunta "same-side kaon" tagging: ottimizzazione e calibrazione in corso con misura del mixing del B_s.
- Attesi altri ~1.5 fb⁻¹ a \sqrt{s} =8TeV nel 2012.

Determinazione del segno di $\Delta\Gamma_s$

- Due soluzioni ai fit per l'ambiguità nelle decay rates: $(\phi_s, \Delta\Gamma_s) \rightarrow (\pi \phi_s, -\Delta\Gamma_s)$
- L'ambiguità viene risolta usando l'interferenza tra onda-P e onda-S in range di m(K⁺K⁻) esteso attorno la risonanza φ(1020)

- Per ciascuno dei 4 bins di massa si ripete il fit misurando:
 - frazione onda-S
 - differenza relativa di fase forte: $\delta_{S\perp} = \delta_{S} \delta_{\perp}$

 $\delta_{\rm SL}$ è prevista decrescere rapidamente \rightarrow scelta la soluzione con $\Delta\Gamma_{\rm s}$ >0

$\phi_{s} \operatorname{da} B_{s} \rightarrow J/\psi \pi^{+}\pi^{-}$

- $B_s \rightarrow J/\psi f_0$ osservato per la prima volta a LHCb. Con 0.4 fb⁻¹ misurato ϕ_s in $B_s \rightarrow J/\psi f_0$.
- Misura aggiornata a 1 fb⁻¹ usando più largo range di massa $\pi\pi$.
- Analisi Dalitz dimostra che lo stato finale è 97.7% CP-dispari @95% C.L.
 → Non necessita di analisi angolare. Contributo di f₀(980) ~70%.
- ~7400 eventi di segnale (selezione con BDT)

LHCb-PAPER-2012-005

$\phi_{s} \text{ da } B_{s} \rightarrow J/\psi \pi^{+}\pi^{-}$

- Fit a massa e tempo.
- Input $\Gamma_s \in \Delta \Gamma_s$ da analisi $B_s \rightarrow J/\psi \phi$.

Resonance	Normalized fraction $(\%)$
$f_0(980)$	69.7 ± 2.3
$f_0(1370)$	21.2 ± 2.7
non-resonant $\pi^+\pi^-$	8.4 ± 1.5
$f_2(1270), \Lambda = 0$	0.49 ± 0.16
$f_2(1270), \Lambda = 1$	0.21 ± 0.65

Combinato con $B_s \rightarrow J/\psi \phi$

 ϕ_s = -0.002 ± 0.083 (stat) ± 0.027 (syst) rad

Implicazioni: un esempio

D.Straub [arXiv:1107.0266]. Correlazione tra BR($B_s \rightarrow \mu \mu$) e ϕ_s in diversi modelli: SM4, two-Higgs con fasi flavour-blinded e modelli SUSY.

Implicazioni: un esempio

D. Straub [arXiv:1107.0266v1] 50 CDF 95% C.L. MSSM-AKM MSSM-AC MSSM-RVV2 $10^9 \times BR(B_s \rightarrow \mu^+\mu^-)$ 202HDM_{MFV} 10 LHCb SM4 $B_s \rightarrow \mu \mu \ 1 fb^{-1}$ 5 ☆ MSSM-SU(5) 2 -0.5 -1.0 0.0 0.51.0 $S_{\psi\phi}$ LHCb B_s→J/ψφ 1fb⁻¹

$$B_s \rightarrow \phi \phi$$

- Canale promettente per ricerca di NP.
- Nel MS la CPV ≈ 0

$$\phi_{Bs \rightarrow \phi\phi}^{SM} \approx 2 \text{ arg}(V_{ts}^{*}V_{tb}) - \text{arg}(V_{ts}^{}V_{tb}^{*}) = 0$$

Segnale molto pulito ~ 800 eventi.

- Per studio completo di CPV necessaria analisi angolare, con flavour tagging, dipendente dal tempo.
- Smoking gun: asimmetria nei tripli prodotti, funzioni che violano CP.

$$B_s \rightarrow \phi \phi$$

 $A_{U} = \frac{N(U > 0) - N(U < 0)}{N(U > 0) + N(U < 0)}$

e simile per A $_{\rm V}$

 $V = \pm \sin \Phi$

 $\cos\theta_1 \cos\theta_2 \ge 0, < 0$

A_{U,V} ≠0 → segnale di CPV da NP

- Primo risultato da CDF (PRL 107(2011) : A_U= - 0.007 ± 0.064 ± 0.018 A_V = - 0.120 ± 0.064 ± 0.016
- LHCb 1 fb⁻¹

$$A_U = -0.055 \pm 0.036 \,(\text{stat}) \pm 0.018 \,(\text{syst}) A_V = 0.010 \pm 0.036 \,(\text{stat}) \pm 0.018 \,(\text{syst})$$

Vite medie in decadimenti in autostati di CP

• Altro modo per accedere a $\Delta \Gamma_s \in \phi_s$: misura delle vite medie in decadimenti a stati finali puramente CP-pari o CP-dispari.

$$\Gamma(t) \propto (1 - \mathcal{A}_{\Delta\Gamma_s}) e^{-\Gamma_L t} + (1 + \mathcal{A}_{\Delta\Gamma_s}) e^{-\Gamma_H t}$$

• In assenza di CPV: $A_{\Delta\Gamma_s} = \pm 1$

$$\begin{array}{lll} \mbox{CP-pari:} & \Gamma_{\rm L} & {\sf B}_{\rm s} \ensuremath{\rightarrow} {\sf K}^{\scriptscriptstyle +}{\sf K}^{\scriptscriptstyle -} \\ \mbox{CP-dispari:} & \Gamma_{\rm H} & {\sf B}_{\rm s} \ensuremath{\rightarrow} {\sf J}/\psi \ {\sf f}_0 \end{array}$$

$$A_{\Delta\Gamma_s} = \frac{-2\eta_f \cos\phi_s}{(1+|\lambda|^2)}$$

 $\lambda = (q/p)(A/A)$

Lifetime $B_s \rightarrow K^+K^-$

- Due misure sui dati 2010 con approcci diversi per correggere bias sulla lunghezza di decadimento dovute a trigger e selezione.
- Nuova misura su 1 fb⁻¹ minimizza le distorsioni in selezione, usa trigger dedicato.

In accordo con misure precedenti e previsione del MS: $\tau_{KK}^{SM} = (1.390 \pm 0.032) \text{ ps}$

Conclusioni

- Grazie agli esperimenti ai collisori adronici la CPV incomincia ad essere misurata anche il settore del B_s. Accordo col MS, ma c' è ancora spazio per la ricerca di NP.
- Misura preliminare di LHCb con $B_s \rightarrow J/\psi \phi$ su 1 fb⁻¹:

$$\begin{split} \Gamma_{s} &= 0.658 \pm 0.005 \; (\text{stat}) \pm 0.007 \; (\text{syst}) \quad \text{ps}^{\text{-1}} \\ \Delta \Gamma_{s} &= 0.116 \pm 0.018 \; (\text{stat}) \pm 0.006 \; (\text{syst}) \quad \text{ps}^{\text{-1}} \\ \phi_{s} &= -0.001 \pm 0.101 \; (\text{stat}) \pm 0.027 \; (\text{syst}) \quad \text{rad} \end{split}$$

• Combinata con la misura in $B_s \rightarrow J/\psi \pi \pi$:

 ϕ_s = -0.002 ± 0.083 (stat) ± 0.027 (syst) rad

- I primi risultati su $B_s \rightarrow \phi \phi$ aprono buone prospettive per le ricerche ad alta luminosità.
- La misura precisa delle vite medie in diversi canali aggiungerà ulteriori informazioni su $\Delta\Gamma_s$ e φ_s

Backup

$\phi_s \text{ da } B_s \rightarrow J/\psi \phi$ - Decay rate

$$\frac{\mathrm{d}^4 \Gamma(B_s^0 \to J/\psi \,\phi)}{\mathrm{d}t \,\mathrm{d}\Omega} \propto \sum_{k=1}^{10} h_k(t) \,f_k(\Omega)$$

 $h_k(t) = N_k e^{-\Gamma_s t} \left[c_k \cos(\Delta m_s t) + d_k \sin(\Delta m_s t) + a_k \cosh\left(\frac{1}{2}\Delta\Gamma_s t\right) + b_k \sinh\left(\frac{1}{2}\Delta\Gamma_s t\right) \right]$

k	$f_k(heta,\psi,arphi)$	N_k	a_k	b_k	c_k	d_k
1	$2\cos^2\psi\left(1-\sin^2\theta\cos^2\phi\right)$	$ A_0(0) ^2$	1	$-\cos\phi_s$	0	$\sin \phi_s$
2	$\sin^2\psi\left(1-\sin^2 heta\sin^2\phi ight)$	$ A_{ }(0) ^{2}$	1	$-\cos\phi_s$	0	$\sin \phi_s$
3	$\sin^2\psi\sin^2\theta$	$ A_{\perp}(0) ^2$	1	$\cos\phi_s$	0	$-\sin\phi_s$
4	$-\sin^2\psi\sin2\theta\sin\phi$	$ A_{\parallel}(0)A_{\perp}(0) $	0	$-\cos(\delta_{\perp}-\delta_{\parallel})\sin\phi_s$	$\sin(\delta_{\perp} - \delta_{\parallel})$	$-\cos(\delta_{\perp}-\delta_{\parallel})\cos\phi_s$
5	$\frac{1}{2}\sqrt{2}\sin 2\psi \sin^2 \theta \sin 2\phi$	$ A_0(0)A_{\parallel}(0) $	$\cos(\delta_{\parallel}-\delta_{0})$	$-\cos(\delta_{\parallel}-\delta_{0})\cos\phi_{s}$	0	$\cos(\delta_{\parallel}-\delta_{0})\sin\phi_{s}$
6	$\frac{1}{2}\sqrt{2}\sin 2\psi\sin 2\theta\cos\phi$	$ A_0(0)A_{\perp}(0) $	0	$-\cos(\delta_{\perp}-\delta_0)\sin\phi_s$	$\sin(\delta_{\perp} - \delta_0)$	$-\cos(\delta_{\perp}-\delta_0)\cos\phi_s$
7	$\frac{2}{3}(1-\sin^2\theta\cos^2\phi)$	$ A_{s}(0) ^{2}$	1	$\cos\phi_s$	0	$-\sin\phi_s$
8	$\frac{1}{3}\sqrt{6}\sin\psi\sin^2\theta\sin2\phi$	$ A_s(0)A_{\parallel}(0) $	0	$-\sin(\delta_{\parallel}-\delta_{\rm S})\sin\phi_s$	$\cos(\delta_{\parallel}-\delta_{ m S})$	$-\sin(\delta_{\parallel}-\delta_{\rm S})\cos\phi_s$
9	$\frac{1}{3}\sqrt{6}\sin\psi\sin2\theta\cos\phi$	$ A_s(0)A_\perp(0) $	$\sin(\delta_{\perp} - \delta_{\rm S})$	$\sin(\delta_{\perp} - \delta_{\rm S})\cos\phi_s$	0	$-\sin(\delta_{\perp}-\delta_{\rm S})\sin\phi_s$
10	$\frac{4}{3}\sqrt{3}\cos\psi(1-\sin^2\theta\cos^2\phi)$	$ A_s(0)A_0(0) $	0	$-\sin(\delta_0-\delta_{\rm S})\sin\phi_s$	$\cos(\delta_0 - \delta_{ m S})$	$-\sin(\delta_0-\delta_{\rm S})\cos\phi_s$

 δ_0 set to 0

LHCb: $\phi_s \text{ da } B_s \rightarrow J/\psi \phi$

Source	Γ_s	$\Delta \Gamma_s$	A^2_\perp	A_{0}^{2}	F_S	δ_{\parallel}	δ_{\perp}	δ_s	ϕ_s
	$[ps^{-1}]$	$[\mathrm{ps}^{-1}]$	-			[rad]	[rad]	[rad]	[rad]
Description of background	0.0010	0.004	-	0.002	0.005	0.04	0.04	0.06	0.011
Angular acceptances	0.0018	0.002	0.012	0.024	0.005	0.12	0.06	0.05	0.012
t acceptance model	0.0062	0.002	0.001	0.001	-	-	-	-	-
z and momentum scale	0.0009	-	-	-	-	-	-	-	-
Production asymmetry $(\pm 10\%)$	0.0002	0.002	-	-	-	-	-	-	0.008
CPV mixing & decay $(\pm 5\%)$	0.0003	0.002	-	-	-	-	-	-	0.020
Fit bias	-	0.001	0.003	-	0.001	0.02	0.02	0.01	0.005
Quadratic sum	0.0066	0.006	0.013	0.024	0.007	0.13	0.07	0.08	0.027

$\phi_s \text{ da } B_s \rightarrow J/\psi \phi$ - Risultati D0

$$\begin{aligned} \bar{\tau}_{s} &= 1.443^{+0.038}_{-0.035} \,\mathrm{ps}, \quad \Delta \Gamma_{s} &= 0.163^{+0.065}_{-0.064} \,\mathrm{ps^{-1}}, \\ \phi_{s}^{J/\psi\phi} &= -0.55^{+0.38}_{-0.36}, \quad |A_{0}|^{2} &= 0.558^{+0.017}_{-0.019}, \\ |A_{\parallel}|^{2} &= 0.231^{+0.024}_{-0.030}, \quad \delta_{\parallel} &= 3.15 \pm 0.22, \end{aligned}$$
(13)
$$\cos(\delta_{\perp} - \delta_{s}) &= -0.11^{+0.27}_{-0.25}, \quad F_{s} &= 0.173 \pm 0.036, \end{aligned}$$

LHCb: Determinazione del segno di $\Delta\Gamma_s$

Phase difference between S- and P-wave amplitudes

Solution II Solution 1 Parameter 0.167 ± 0.175 2.975 ± 0.175 ϕ_s (rad) $\Delta\Gamma$ (ps^{-1} 0.120 ± 0.028 -0.120 ± 0.028 0.283 ± 0.113 0.283 ± 0.113 $F_{S:1}$ 0.061 ± 0.022 0.061 ± 0.022 $F_{S:2}$ 0.044 ± 0.022 0.044 ± 0.022 $F_{S:3}$ 0.269 ± 0.067 $F_{S:4}$ 0.269 ± 0.067 -0.46 + 0.35+0.42 $\delta_{S\perp;1}$ (rad) -2.680.35-2.92-0.22 $\delta_{S\perp:2}$ (rad) 0.160.18.25 $\delta_{S\perp:3}$ (rad) 0.180.16+0.280.430.9' $\delta_{S\perp:4}$ (rad 0.28

15

Frazione di onda S piccola ma misurabile

LHCb: $B_s \rightarrow \phi \phi$ Amplitude analysis

$$\begin{aligned} |A_0|^2 &= 0.365 \pm 0.022 \,(\text{stat}) \pm 0.012 \,(\text{syst}) \\ |A_{\perp}|^2 &= 0.291 \pm 0.024 \,(\text{stat}) \pm 0.010 \,(\text{syst}) \\ |A_{\parallel}|^2 &= 0.344 \pm 0.024 \,(\text{stat}) \pm 0.014 \,(\text{syst}) \\ \cos(\delta_{\parallel}) &= -0.844 \pm 0.068 \,(\text{stat}) \pm 0.029 \,(\text{syst}) \end{aligned}$$

LHCb: $B_s \text{ mixing in } B_s \rightarrow D_s^- \pi^+$

