Development of Micromegas detectors for the ATLAS Muon System upgrade

Paolo Iengo (INFN - Napoli)

On behalf of the MAMMA* Collaboration

*Muon ATLAS MicroMegas Activity

Arizona, Athens (U, NTU, Demokritos), Brandeis, Brookhaven, CERN, Carleton, Frascati, Istanbul (Bogaziçi, Doğuş), JINR Dubna, MEPHI Moscow, LMU Munich, Naples, CEA Saclay, USTC Hefei, South Carolina, Thessaloniki
Introduction

- LHC schedule: towards 3000 fb$^{-1}$

2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
... 2030?

LHC start-up $\sqrt{s} = 900$GeV

$\sqrt{s} = 7$TeV rising to 8TeV, $\mathcal{L} = 6 \times 10^{33}cm^{-2}s^{-1}$, bunch spacing 50ns

Go to design energy and nominal luminosity

$\sqrt{s} = 13$-14TeV, $\mathcal{L} = 1 \times 10^{34}cm^{-2}s^{-1}$, bunch spacing 25ns

Injector and LHC Phase-I upgrade to full design luminosity

$\sqrt{s} = 14$TeV, $\mathcal{L} = 2$-3$ \times 10^{34}cm^{-2}s^{-1}$, bunch spacing 25ns

HL-LHC Phase-II upgrade, crab cavities, new IR, ...

$\sqrt{s} = 14$TeV, $\mathcal{L} = 5 \times 10^{34}cm^{-2}s^{-1}$ (luminosity levelling) 25ns

https://indico.cern.ch/getFile.py/access?contribId=31&sessionId=5&resId=1&materialId=slides&confId=164089
Upgrade of ATLAS Muon Spectrometer

- Small Wheel muon chambers need to be upgraded in phase I
 - Present detectors will reach their rate limit at $\sim 5\times 10^{34} \text{ cm}^{-2}\text{s}^{-1}$
 - Reduce the fake rate at $p_T > 20\text{GeV}$ (at present small wheel not used in LVL1 trigger)
 - Improve p_T resolution to sharpen thresholds
The New Small Wheel

- Reduction of fake rates with NSW:
 - 0. w/o NSW
 - 1. requiring the presence of a segment in NSW
 - 2. requiring NSW segment pointing to IP (\(\theta<1\text{mrad}\))
 - 3. requiring NSW segment matching in \((\eta,\phi)\) the EM muon chamber trigger segment

Reduction of L1_MU20 trigger rate

Efficiency of L1_MU20 trigger

- Three options proposed for NSW:
 - sMDT+sTGC
 - sMDT+mRPC
 - Micromegas
The MAMMA Project

Today:
MDT chambers (drift tubes)
TGCs for 2nd coordinate (not visible)

Replace the muon chambers of the Small Wheels with 128 micromegas chambers (0.5–2.5 m2)

- Combine precision and 2nd coord. measurement as well as trigger functionality in a single device
- Each chamber comprises eight active layers, arranged in two multilayers
 \Rightarrow a total of about 1200 m2 of detection layers
 \Rightarrow 2M readout channels
- Project started in 2007
 - Proto-Collaboration MAMMA (Muon Atlas MicroMegas Activity) formed with 15 groups involved
 - Napoli involved since the beginning, Frascati recently joined, others interested
Micromegas (I. Giomataris, G. Charpak et al., NIM A 376 (1996) 29) are parallel-plate chambers where the amplification takes place in a thin gap, separated from the conversion region by a fine metallic mesh.

- The thin amplification gap (short drift times and fast absorption of the positive ions) makes it particularly suited for high-rate applications.

Micromegas operating principle

- No space charge effect
- Intrinsic rate limit ~200 MHz/cm²
Performance & μTPC mode

Performance requirements for the Small Wheel chambers

- Rate capability $15 \text{ kHz/cm}^2 \ (L \approx 5 \times 10^{34} \text{ cm}^{-2}\text{s}^{-1})$
- Efficiency > 98
- Spatial resolution $\approx 100 \mu\text{m} \ (\Theta_{\text{track}} < 30^\circ)$
- Good double track resolution
- Trigger capability (BCID, time resolution $\leq 5\text{–}10 \text{ ns}$)
- Radiation resistance
- Good ageing properties

Micromegas as μTPC
- Can deliver track vector in single plane for track reconstruction at LVL1 trigger

Addressed problems:
1. Tracking for inclined tracks
2. Large-size detectors
3. Sparks

P. Iengo - Micromegas for ATLAS - IFAE 2012 Ferrara
Event display from TB

- Vertical track

Three chambers in stack

| MM1 | MM2 | MM3 |

Charge (200 e-)

Time (25 ns)

Strip number (250μm pitch)
Event display from TB

- Two Inclined tracks (~40°)

Run: 6248, Event: 10

Tracks separated by 5mm

Two chambers in stack

MM1

MM2
A production technique developed in 2006 (bulk-micromegas) opened the door to industrial fabrication.

Reliable production of large size Micromegas is possible!

The largest MM ever built:

250 µm strip pitch

$\sigma_{MM} = 36 \pm 7 \mu m$

Gain Efficiency

$\text{Ar:CF}_4:i\text{C}_4\text{H}_{10} (88:10:2)$
Sparks: problem and solution

- Small defects or impurities on the detector surfaces trigger discharges (breakdowns). Even in device of good quality, when the avalanche reaches Raether limit \((10^6-10^7 \text{ e-})\) a breakdown appears in the gas, often referred as ‘spark’

- Sparks lead to a partial discharge of the amplification mesh \(\rightarrow\) HV drop & inefficiency during charge-up; not acceptable at LHC.
 Risk of damaging for chamber and FE-elx

- Sparks can be drastically reduced by adding a resistive layer on the r/o strips

- Specific R&D to optimize the resistive protection

- Excellent results

![Graphs showing current vs. time and gain vs. voltage for non-resistive and resistive MM in neutron beam tests.](image)

P. Iengo - Micromegas for ATLAS - IFAE 2012 Ferrara

13/04/12
Micromegas in ATLAS

- Four small MM chambers were installed in ATLAS behind the last muon station in April 2011 and smoothly operated all along the 2011 (background measured to be ~ 3 Hz/cm2 at $L=10^{34}$ cm$^{-2}$s$^{-1}$; ~ 3 times lower than nearby EOL MDT)

- First large size resistive MM assembled and tested in muon beam in 2011 to be installed in the ATLAS cavern on the small wheel for test

- A small prototype has been installed to evaluate the possibility to replace the Minimum Bias Trigger Scintillator of ATLAS with Micromegas

- Integration in the ATLAS acquisition system
Summary & Plans

- The Small Wheels of the ATLAS Muon Spectrometer need a major upgrade to cope with the LHC phase-1 luminosity
- Micromegas fulfil all of the Small Wheel requirements
- We found an efficient spark-protection system that is easy to implement; sparks are no longer a show-stopper
- MMs are very robust and (relatively) easy to construct; large-area resistive-strip chambers can be built and they work very well
- Good single-plane tracking performance can be obtained by exploiting the μTPC mode
- From the three original proposals for the NSW a ‘mixed’ option is now under discussion in the collaboration:
 - TGC+Micromegas
- Decision to be made this year, installation of NSW in 2018.
Backup Slides
Introduction
The problem of the fake rate

Current LVL1 end-cap trigger
- Only the vector BC at the Big Wheels is measured
- Momentum defined by assumption that track originated at IP
- Random background tracks can easily fake this
- Currently 96% of forward high-p_T triggers (at LVL1) have no track associated with them

Proposed LVL1 trigger
- Add vector A at Small Wheel
- Powerful constraint for real tracks
- A pointing resolution of 1 mrad will also improve p_T resolution
The bulk-Micromegas

- A production technique developed in 2006 (bulk-micromegas) opened the door to industrial fabrication
- Big effort for going to large dimensions
- In 2007 production of the first large MM prototype for ATLAS (50x60 cm², the largest MM at the time)
- In 2010 production of a CSC-size Micromegas

Reliable production of large size Micromegas is possible!

- Other improvements in the segmentation of the r/o electrodes
- 2D (xy) and 3D (xuv) r/o strips showed encouraging results
Demonstrated performance

- Standard micromegas
- Safe operating point with efficiency ≥99%
- Gas gain: 3–5 x 10^3
- Very good spatial resolution

Spatial resolution (mm)

Mean = (3.5 ± 1.3) μm
Sigma = (70.7 ± 1.3) μm
(MM + Si telescope)

σ_{MM} = 36 ± 7 μm

250 μm strip pitch

Inefficient areas

Ar:CF_4:iC_4H_{10} (88:10:2)
Resistive-strip protection concept

Mesh support pillar

Resistive strip 0.5–100 MΩ/cm

PCB

Insulator

Cu readout strip

Embedded resistor 50 MΩ 5mm long

Resistive Strip 0.5–100 MΩ/cm

PCB

GND

Copper readout strip
A tentative Layout of the New Small Wheels and a sketch of an 8-layer chamber built of two multilayers, of four active layers each, separated by an instrumented Al spacer for monitoring the internal chamber deformations.