The ATLAS detector

Inner detector:
- Pixel + SCT: $|\eta| < 2.5$
- TRT: $|\eta| < 2$
- $\sigma_{pT}/p_T \approx 3.8 \cdot 10^{-4} p_T \pm 1\%$

Calorimetry:
- LAr + Tile: $|\eta| < 3.2$
- FCAL: $|\eta| < 4.9$
- EM: $\sigma/E \approx 10\%/\sqrt{E} \pm 0.7\%$
- Hadronic: $\sigma/E \approx 50\%/\sqrt{E} \pm 3\%$

Trigger:
- 3 levels, rate reduction $40\text{MHz} \Rightarrow <500\text{Hz}$

Muons:
- RPC + TGC (trigger): $|\eta| < 2.4$
- MDT + CSC: $|\eta| < 2.7$
- Momentum resolution $<10\%$ up to 1 TeV
Atlas data taking in 2011

- Excellent LHC performance
 - integrated luminosity: 5.6 fb$^{-1}$
 - peak luminosity: 3.6 10^{33} cm$^{-2}$s$^{-1}$ → high pile-up
- Excellent ATLAS performance
 - high data taking efficiency (>93%)
Higgs production at the LHC

Higgs production at the LHC

Typical size of uncertainties (exact values depend on M_H):

<table>
<thead>
<tr>
<th></th>
<th>ggF</th>
<th>VBF</th>
<th>WH/ZH</th>
<th>ttH</th>
</tr>
</thead>
<tbody>
<tr>
<td>QCD scale:</td>
<td>+12%</td>
<td>±1%</td>
<td>±1%</td>
<td>+3%</td>
</tr>
<tr>
<td>PDF + α_s:</td>
<td>±8%</td>
<td>±4%</td>
<td>±4%</td>
<td>±8%</td>
</tr>
</tbody>
</table>

Gluon fusion

Vector boson fusion

Associated production with top pair
Higgs boson decays

- $M_H < 135$ GeV
 - $H \rightarrow \tau\tau$, $H \rightarrow bb$ dominate, $H \rightarrow WW^{(*)}$, $H \rightarrow ZZ^{(*)}$ and $H \rightarrow \gamma\gamma$ (small branching ratio but clean signature) are the most sensitive

- $M_H > 135$ GeV
 - $H \rightarrow WW$ and $H \rightarrow ZZ$ dominates ($H \rightarrow ZZ \rightarrow l\ell\nu\nu$ most sensitive)
Higgs boson search strategies

Summary of ATLAS search analyses:
- cut based strategies
- background estimates relies on data-driven techniques using control regions

<table>
<thead>
<tr>
<th>Channel</th>
<th>m_\text{H} range (GeV)</th>
<th>Background</th>
<th>L (fb^{-1})</th>
<th>s/b</th>
<th>Sensitivity (\sigma_{\text{SM}})</th>
<th>Reference*</th>
</tr>
</thead>
<tbody>
<tr>
<td>\text{Low-m}_\text{H} - good mass resolution</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H\rightarrow\gamma\gamma</td>
<td>110-150</td>
<td>\gamma\gamma, \gamma\gamma, jj</td>
<td>4.9</td>
<td>0.02</td>
<td>1.6-2.6</td>
<td>arXiv:1202.1414</td>
</tr>
<tr>
<td>H\rightarrow\text{ZZ}^{(*)}\rightarrow4\ell</td>
<td>110-600</td>
<td>\text{ZZ}^{(*)}, Z+\text{jets}, tt</td>
<td>4.8</td>
<td>1.5</td>
<td>0.6-9</td>
<td>arXiv:1202.1415</td>
</tr>
<tr>
<td>\text{Low-m}_\text{H} - limited mass resolution</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H\rightarrow\text{WW}^{(*)}\rightarrow\ell\nu\ell\nu</td>
<td>110-600</td>
<td>WW</td>
<td>4.7</td>
<td>0.3</td>
<td>0.2-8</td>
<td>CONF-2012-012</td>
</tr>
<tr>
<td>H\rightarrow\tau\tau</td>
<td>100-150</td>
<td>Z\rightarrow\tau\tau, tt</td>
<td>4.7</td>
<td>0.02</td>
<td>3-12</td>
<td>CONF-2012-014</td>
</tr>
<tr>
<td>VH, H\rightarrow bb</td>
<td>110-130</td>
<td>W/Z+\text{jets}, tt</td>
<td>4.7</td>
<td>10^{-3}</td>
<td>2.5-5</td>
<td>CONF-2012-015</td>
</tr>
<tr>
<td>\text{High-m}_\text{H}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H\rightarrow\text{ZZ}\rightarrow\ell\nu\ell\nu</td>
<td>200-600</td>
<td>\text{diboson}, tt, Z+\text{jet}</td>
<td>4.7</td>
<td>0.3</td>
<td>0.5-2.5</td>
<td>CONF-2012-016</td>
</tr>
<tr>
<td>H\rightarrow\text{ZZ}\rightarrow\ell\nu jj</td>
<td>200-600</td>
<td>Z+\text{jets}, tt, \text{diboson}</td>
<td>4.7</td>
<td>0.5</td>
<td>0.9-9</td>
<td>CONF-2012-017</td>
</tr>
<tr>
<td>H\rightarrow\text{WW}\rightarrow\ell\nu jj</td>
<td>300-600</td>
<td>W+\text{jets}, tt, multi-\text{jets}</td>
<td>4.7</td>
<td>10^{-3}</td>
<td>1.8-5</td>
<td>CONF-2012-018</td>
</tr>
</tbody>
</table>

(Mainly focusing on the low-m_\text{H} region)

*) CONF-2012-XXX= ATLAS-CONF-2012-XXX
Higgs searches in the high mass region

The three channels sensitive to a high m_H are: $H \rightarrow ZZ \rightarrow llvv$, $H \rightarrow ZZ \rightarrow lljj$, $H \rightarrow WW \rightarrow jjjj$

(WW $\rightarrow jjjj$ in M. Biglietti’s talk)

$H \rightarrow ZZ \rightarrow llvv$:
most sensitive channel at high m_H

Limit extraction based on m_T

Exclusion Limit:
260-460 GeV (Expected)
320-560 GeV (Observed)

$H \rightarrow ZZ \rightarrow lljj$:
Limit extraction based on m_{lljj}

Exclusion Limit:
360-400 GeV (Expected)
300-310; 360-400 GeV (Observed)
H→WW (*)→lvlv

(more in M. Biglietti’s talk)
Most sensitive channel 125<m_H<180 GeV

- Selection criteria (function of n-jet)
 - 2lep. \(p_T > 25(15) \) GeV, \(E_T^{miss} > 45 \) GeV, \(m_{ll} < 50(80) \) GeV,
 \(\Delta \Phi_{ll} < 1.8, \ p^l_T > 45(30) \) GeV, \(p_T^{tot} < 30 \) GeV, b-tag veto

- Background
 - WW \(\rightarrow \Delta \Phi_{ll} \) sidebands
 - top \(\rightarrow \) no tagging requirement
 - Z/W+jet \(\rightarrow \) control sample
 Z peak / reverted lepton ID

Exclusion Limit:
127-234 GeV (Expected)
130-260 GeV (Observed)
The golden channel

- High mass resolution
 - 1.5-2% @ 130 GeV
 - natural width dominates above 350 GeV

- High lepton performances
 - high lepton efficiency down to p_T of 7 GeV
 - independent of pile-up
 - 0.2-2% uncertainty on signal yield
 - 0.6% uncertainty on m_{4e} scale
 - lepton performance well modeled by sim.

$m_{4l} = 124.3$ GeV
$m_{2l} = 74.6, 45.7$ GeV
Selection

- 4 leptons, $p_T^{1,2,3,4}>20(7)$ GeV; $|\eta_e|<2.47$ and $|\eta_\mu|<2.7$; track and calorimeter isolation
- $m_{12} < m_Z \pm 15$ GeV $m_{34} > 15-60$ GeV (depending m_H)
- selection efficiency at $m_H=130$ (360) GeV: 27(60)% 4μ; 18(52)% 2μ2e; 14(45)% 4e

Background

- $ZZ^{(*)}$ \rightarrow simulation (QCD: 5%; PDF+α_s: 4-8%, 10% on $gg\rightarrow ZZ$)
- $Z+\text{jets}$ \rightarrow control region without charge, isolation, and impact parameter criteria on the second lepton pair (40-45% uncertainty)
- top \rightarrow $e^+\mu^-$ pair consistent with m_Z and 2 additional same-flavor leptons
H→ZZ(*)→4l: results

Expected exclusion limit:
137-157, 184-400 GeV

Observed exclusion limit:
134-156, 182-233, 256-265, 268-415 GeV

<table>
<thead>
<tr>
<th>number of events in the full mass range</th>
<th>4μ</th>
<th>2e2μ</th>
<th>4e</th>
</tr>
</thead>
<tbody>
<tr>
<td>Expected</td>
<td>18.6±2.8</td>
<td>29.7±4.5</td>
<td>13.4±2.0</td>
</tr>
<tr>
<td>Observed</td>
<td>24</td>
<td>30</td>
<td>17</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Local significance of excess</th>
<th>125 GeV</th>
<th>244 GeV</th>
<th>500 GeV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Expected</td>
<td>1.3σ</td>
<td>3.0σ</td>
<td>1.5σ</td>
</tr>
<tr>
<td>Observed</td>
<td>2.1σ</td>
<td>2.2σ</td>
<td>2.1σ</td>
</tr>
</tbody>
</table>

Expected

\[
\frac{\sigma}{\sigma_{SM}} = 1.3\sigma \quad 3.0\sigma \quad 1.5\sigma
\]

Observed

\[
\frac{\sigma}{\sigma_{SM}} = 2.1\sigma \quad 2.2\sigma \quad 2.1\sigma
\]
H → ZZ(*) → 4l: results

Expected exclusion limit:
137-157, 184-400 GeV

Observed exclusion limit:
134-156, 182-233, 256-265, 268-415 GeV
$H \rightarrow \gamma\gamma$

- **2 photons**
 - $ET(\gamma_1) > 40 \text{ GeV}$
 - $ET(\gamma_2) > 25 \text{ GeV}$

- **Powerful γ-jet separation**
 - η-strips (4mm)
 - $\Rightarrow \gamma \text{ vs } \pi^0 \rightarrow \gamma\gamma$

- **High mass resolution:**
 - Excellent energy resolution
 - Long segmentation
 - $\gamma\gamma$ angular separation
 - Z-vertex determination
9 categories: $\eta_\gamma \otimes$ conversion status $\otimes p_T$-thrust$^{\gamma\gamma}$

- Background composition tested on data
 - inverted photon isolation and ID criteria
 - fraction of true $\gamma\gamma = (71 \pm 5)\%$

- Background normalization from fit to $m_{\gamma\gamma}$ spectrum
 - simultaneous fit to the 9 categories
 - Exponential function (free slope and norm.)

- signal $m_{\gamma\gamma}$ mass modeling
 - sum of crystal ball (core)
 - Gaussian function (tails)
 - $\sigma_{CB}(m_H=120 \text{ GeV}) = 1.4-2.3\text{ GeV}$ (category dep.)
 - FWHM ($m_H=120 \text{ GeV}$) = 3.3-5.9GeV (category dep.)
 - mass scale uncertainty: 0.7 GeV ($m_H=120$ GeV)
H→γγ: results

- **s/b ≈ 2% @ m_H=125GeV**
 - **H→γγ yield ≈ 70 events**
 - **≈3000 observed events**

- **Main systematics uncertainties:**
 - Expected signal yield: ≈20%
 - **H→γγ mass resolution: ≈14%**
 - **H→γγ p_T modeling: ≈8%**
 - **background modeling: 0.1-7.9 events**

Observed exclusion limit:

113-115, 134.5-136 GeV

Unable to exclude the Higgs over the full range due to an excess of events observed at 126 GeV

- **local significance: 2.8σ (expected ~1.3σ)**
- **global 110<m_H<150GeV: 1.5σ**
W/ZH(ll,lv,vv)bb

11 categories: (ll,lv) \otimes 4 p_T-bin \oplus vv \otimes 3 E_T-bin

High p_T-bin better s/b ratio

Limit extraction based on invariant mass m_{bb} shape ($m_{lv} = m_W$)

- **Selection Criteria**
 - 2(l)lep., E_T-bin, m_{ll} (m_T), $\Delta \Phi_{ll}$ at least(exactly) 2 jets; exactly 2 b-tags

- **Background**
 - top \rightarrow shape: sim.; norm.: fit m_{bb}>150 GeV
 - W/Z+jet \rightarrow shape: sim.; norm.: fit m_{bb}<85 GeV
 - multijet \rightarrow reversed lepton ID; $\Delta \Phi(E_T, p_T)$
H \Rightarrow \tau\tau \Rightarrow (ll4\nu, lT_{had}3\nu, 2T_{had}2\nu)

12 categories: decay channel (ll4\nu, lT_{had}3\nu, 2T_{had}2\nu) and jet mult. (0-, 1-, 2-jet VH, 2-jet VBF)

Limit extraction based on invariant mass $m_{\tau\tau}$ shape (thanks to the collinearity of the τ decay products)

- **Selection criteria**
 - $2,1,0$lep.$+0,1,2T_{had},E_T^{miss},m_{ll}(m_T),\Delta\Phi_{ll}$, jet mult. 0,1,2

- **Background**
 - $Z \rightarrow \tau\tau$ norm from theory; shape from $Z \rightarrow \mu\mu$
 - fake leptons and τ-jets:
 - ll4\nu: reversed lepton isolation
 - lT_{had}3\nu: same-sign charge
 - lT_{had}T_{had}2\nu: track multiplicity
Combination

\(W/ZH \rightarrow (ll, lv, vv) bb \)

H \(\rightarrow \gamma \gamma \)

H \(\rightarrow \tau \tau \)

Combined

H \(\rightarrow WW (\ast) \rightarrow lvlv \)

H \(\rightarrow ZZ (\ast) \rightarrow llll \)

H \(\rightarrow ZZ \rightarrow llvv \)
Combined exclusion limit

Expected exclusion limit at 95% CL: $120 < m_H < 555$ GeV
Observed exclusion limit at 95% CL: $110 < m_H < 117.5$ GeV
$118.5 < m_H < 122.5$ GeV
$129 < m_H < 539$ GeV

Observed exclusion limit at 99% CL: $130 < m_H < 486$ GeV
Combined exclusion limit: low m_H region

Zoom in the low mass region

Expected exclusion limit at 95% CL: $120 < m_H < 555$ GeV
Observed exclusion limit at 95% CL: $110 < m_H < 117.5$ GeV
$118.5 < m_H < 122.5$ GeV
$129 < m_H < 539$ GeV
Observed exclusion limit at 99% CL: $130 < m_H < 486$ GeV
Combined p-value

Under the background-only hypothesis probability to observe such or a higher fluctuation than the observed one

Best fit signal strength $\mu = \sigma / \sigma_{SM}$
Combined p-value: low m_H region

Zoom in the low mass region

Under the background-only hypothesis probability to observe such or a higher fluctuation than the observed one

Best fit signal strength $\mu = \sigma / \sigma_{SM}$

Observed local significance for $m_H = 126$ GeV is 2.5σ (expected 2.8σ)

Best-fit signal strength at $m_H = 126$ GeV is $\mu = 0.9^{+0.4}_{-0.3}$

Global probability to observe such a fluctuation over 110-600 GeV (110-146 GeV not excluded at 99% CL by LHC) is 30% (10%)
Anatomy of the observed excess

- An excess is observed in the two high resolution channels:
 - $H \rightarrow \gamma\gamma$ (2.8$[1.4]\sigma$) and $H \rightarrow ZZ^{(*)} \rightarrow 4l$ (2.1$[1.4]\sigma$) combined \Rightarrow 3.4σ local significance

- No such an excess in $H \rightarrow WW^{(*)} \rightarrow l\nu l\nu$ (0.2σ/$[1.6]\sigma$), $H \rightarrow \tau\tau$, $H \rightarrow bb$
 - All channels combined: observed 2.5[$\text{expected 2.9}\sigma$] local significance
2012 perspectives

- **ATLAS expected sensitivity with** $5 \text{ fb}^{-1} @ 7 \text{ TeV}$ **is 3σ**
- **2 times ATLAS (ATLAS+CMS with 5 fb}^{-1} @ 7 \text{ TeV)** is 4σ
- **Gain in sensitivity from 7→8 \text{ TeV}** is 10% in significance (equivalent to 20% in luminosity)
- **Need about 12 \text{ fb}^{-1} @ 8 \text{ TeV}** for a 5σ discovery per experiment (after analysis optimization)
Conclusions

• ATLAS has performed great in 2011

• thanks to the excellent performance of LHC, ATLAS has collected 5.3fb⁻¹ of data

• ATLAS has confined the possible presence of a SM Higgs boson to small regions: $117.5 < m_H < 118.5$ GeV or $122.5 < m_H < 129$ GeV at 95% CL

• An excess is seen around 126 GeV with a (local) significance of 2.5σ, however both signal and background only hypothesis are still alive

• More data are needed for a conclusive statement
Additional material
$H \rightarrow \gamma \gamma$: $m_{\gamma \gamma}$ in the 9 categories

- Unconverted central, low p_T
- Unconverted central, high p_T
- Unconverted rest, low p_T
- Unconverted rest, high p_T
- Converted central, low p_T
- Converted central, high p_T
- Converted rest, low p_T
- Converted rest, high p_T
- Unconverted transition
Search for the Standard Model Higgs Boson with the ATLAS detector

H→γγ: background modeling
H→ZZ(*)→4l: mass distributions
H→WW→lvjj

6 categories (e, μ)⊗(0-, 1-, 2-jet VBF)

Limit extraction based on invariant mass $m_{\nu j}$ shape ($m_{\nu} = m_{W}$)

- Background modeled from fit to lvjj mass spectrum
- Main systematics
 - jet energy scale and resolution (10-20%)
 - pileup (10-15%)
H\rightarrow ZZ\rightarrow ll\nu\nu

Most sensitive channel in high Higgs mass range, 4 categories (ee, \(\mu\mu\)) × (low, high-pileup)

Limit extraction based on transverse mass \(m_T\) shape \(\Rightarrow\) dependent on pile-up due to \(E_T^{miss}\)

- **Different selection for** \(M_H<280\) GeV & \(M_H>280\) GeV
 - cuts on: \(E_T^{miss}, m_\ell, \Delta\Phi_\ell, and \Delta\Phi(p_T^{miss}, p_T^{\ell})\) (boost), \(\Delta\Phi(p_T^{miss}, p_T^{jet})\) background rejection

- **Background**
 - ZZ \(\Rightarrow\) simulation (11\% norm. uncertainty)
 - WZ \(\Rightarrow\) 3-lepton events
 - top \(\Rightarrow\) e\(\mu\) events & \(m_\ell\) sidebands
 - W/Z+jet \(\Rightarrow\) ee, e\(\mu\) same-sign & low \(\Delta\Phi(p_T^{miss}, p_T^{jet})\)

Exclusion Limit: 260-460 GeV (Expected)
320-560 GeV (Observed)
H → ZZ → lljj

2 categories (>2 b-tag, 2 b-tag)

Limit extraction based on transverse mass m_{lljj}

- Different selection for $M_H < 300$ GeV & $M_H > 300$ GeV
 - cuts on: E_T^{miss}, m_{ll}, m_{jj}, ΔR_{jj} and $\Delta \Phi_{ll}$, $\Delta \Phi_{jj} < \pi/2$ (boost),

- Background
 - Z+jet \rightarrow m_{ll} sidebands
 - diboson \rightarrow simulation (11% norm. uncertainty)
 - top \rightarrow m_{ll} sidebands
 - multi-jet \rightarrow revert lepton ID (50% uncertainty)

Exclusion: 360-400 GeV (Expected)
300-310; 360-400 GeV (Observed)
Signal strength in individual channels
Detector related systematic uncertainties

<table>
<thead>
<tr>
<th>Physics object</th>
<th>Source</th>
<th>Uncertainty on signal yield</th>
<th>Most affected channels</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>luminosity</td>
<td>3.9%</td>
<td></td>
</tr>
<tr>
<td>Photon</td>
<td>efficiency</td>
<td>11%</td>
<td>$\gamma\gamma$</td>
</tr>
<tr>
<td></td>
<td>efficiency</td>
<td><3%</td>
<td>4ℓ</td>
</tr>
<tr>
<td></td>
<td>energy scale</td>
<td><1%</td>
<td>4ℓ</td>
</tr>
<tr>
<td></td>
<td>energy resolution</td>
<td><0.5%</td>
<td></td>
</tr>
<tr>
<td>Muon</td>
<td>efficiency</td>
<td><1%</td>
<td>4ℓ</td>
</tr>
<tr>
<td></td>
<td>momentum resolution</td>
<td><1%</td>
<td></td>
</tr>
<tr>
<td>Jet</td>
<td>energy scale</td>
<td>up to 12%</td>
<td>$\tau\tau$, $b\bar{b}$, $lljj$, $lvjj$</td>
</tr>
<tr>
<td></td>
<td>resolution</td>
<td>up to 20%</td>
<td></td>
</tr>
<tr>
<td>b-tagging</td>
<td>efficiency</td>
<td>up to 15%</td>
<td>bb</td>
</tr>
<tr>
<td>τ-jet</td>
<td>efficiency</td>
<td>up to 8%</td>
<td>$\tau\tau$</td>
</tr>
</tbody>
</table>