

** timeline of flavour physics experiments

** going BSM with flavour physics: why and why now
** the twofold role of flavour physics in next years

Timeline of flavor experiments

arXiv:1109.5028

Relevant dates are when full samples are collected

Going BSM with flavour physics: why?

Indirect searches look for new physics through virtual effects of new particles in loop corrections

- * SM FCNCs and CP-violating processes occur at the loop level
- * SM FV and CPV are governed by the weak interactions and suppressed by mixing angles
- * SM quark CPV comes from a single source (neglecting θ_{QCD})
 New Physics does not necessarily share the SM pattern of FV and CPV: very large NP effects are possible

Past (SM) successes in anticipating heavy flavours: 1970: charm from $K^0 \rightarrow \mu^+ \mu^-$ (GIM) 1973: 3rd generation from ϵ_{κ} (Kobayashi & Maskawa) mid 80s+: heavy top from semileptonic decays & Δm_{B}

Going BSM with flavour physics: why now?

- * current and next-generation flavour experiments will be able to improve the experimental precision/sensitivity by one order of magnitude
- * enough NP-insensitive observables to pin down the SM contribution with the required accuracy
- * several NP-sensitive observables not limited by systematics or theoretical uncertainties

Overall, the NP sensitivity extends to (i) the TeV region for SM-like flavour violation and to (ii) tens of TeV or more in less constrained cases

Precision flavour physics & theory uncertainties

no theory improvements needed	β(J/ψ K), γ(DK), α(ππ)*, lepton FV and UV, CPV in B→X _{s+d} γ, D and τ decays zero of FB asymmetry B→X _s l ⁺ l ⁻	NP insensitive or null tests of the SM or SM already known with the required accuracy
improved lattice QCD	meson mixing, $B \rightarrow D(*)Iv$, $B \rightarrow \pi(\rho)Iv$ $B \rightarrow K^*\gamma$, $B \rightarrow \rho\gamma$, $B \rightarrow Iv$, $B_s \rightarrow \mu\mu$	target error: ~1-2% Feasible (see below)
improved OPE+HQE	Β→Χ _{u,c} Ιν, (Β→Χ _s γ)	target error: ~1-2% Possibly feasible with large samples. Detailed studies required
improved QCDF/SCET or flavour symmetries	S from TD A_{CP} in b \rightarrow s transitions	target error: ~2-3% large and hard to improve uncertainties on small corrections. FS+data can bound the th. error

Marco Ciuchini

IFAE 2012 – Ferrara, April 12

Magguramant	Hadronic	Status	6 TFlops	Status	60 TFlops	1-10 PFlops
Measurement	Parameter	End 2006	(Year 2009)	End 2009	(Year 2011)	(Year 2015)
$K \to \pi l v$	$f_+^{K\pi}(0)$	0.9 %	0.7~%	0.5 %	0.4 %	< 0.1 %
ε_K	\hat{B}_K	11 %	5 %	5 %	3 %	1%
B ightarrow l u	f_B	14~%	3.5-4.5 %	5 %	2.5-4.0 %	1.0-1.5 %
Δm_d	$f_{Bs}\sqrt{B_{B_s}}$	13 %	4-5 %	5 %	3-4 %	1-1.5 %
$\Delta m_d / \Delta m_s$	ξ	5%	3 %	2 %	1.5-2 %	0.5 - 0.8 %
$B ightarrow D/D^{st} l u$	$\mathscr{F}_{B o D/D^*}$	4 %	2 %	2 %	1.2 %	0.5~%
$B ightarrow \pi / ho l u$	$f_+^{B\pi},\ldots$	11 %	5.5-6.5 %	11 %	4-5 %	2-3 %
$B ightarrow K^* / ho \left(\gamma, l^+ l^- ight)$	$T_1^{B o K^* / \rho}$	13 %		13 %		3-4 %

Marco Ciuchini

IFAE 2012 – Ferrara, April 12

The twofold role of flavour physics

Depending on the scenario, flavour physics can be used in two "modes" with different aimings

- 1. "NP-Lagrangian reconstruction" mode
 - external information on NP required
 - main tool: correlations among observables
 - need theoretical control on uncertainties of both SM and NP contributions

2. "Discovery" mode

- look for deviation from the SM whatever the origin
- need theoretical control of the SM contribution only
- in general, cannot provide precise information on NP scale, but a positive result would be a strong evidence that NP is not too far (i.e. in the multi-TeV region)

MSSM: flavour violation in the squark sector

and similarly for $M^2_{\tilde{u}}$

NP scale: $m_{\tilde{q}}^{2}$ FV & CPV couplings: $(\delta^{d}_{ij})_{AB} = (\Delta^{d}_{ij})_{AB}/m_{\tilde{q}}^{2}$

$Im(\delta^{d}_{23})_{LR} \vee S \operatorname{Re}(\delta^{d}_{23})_{LR}$ reconstruction of $(\delta^{d}_{23})_{LR} = 0.028 e^{i\pi/4} \text{ for}$ $\Lambda = m_{\widetilde{g}} = m_{\widetilde{q}} = 1 \text{ TeV}$

Determination of (δ^d₂₃)_{LR} using SuperB data

i) sensitive to $m_{\tilde{q}} < 20 \text{ TeV}$ ii) sensitive to $|(\delta^{d}_{23})_{LR}| > 10^{-2}$ for $m_{\tilde{q}} < 1 \text{ TeV}$

OVERALL SUSY ASSESSMENT

see also Paradisi's talk

studying correlations in flavour observables,

together with high-p_t info, we can learn about:

- * the SUSY-breaking mechanism
- * the flavour breaking mechanism
- * the underlying presence of a GUT structure

* the origin of lepton flavour violation

Observable/mode	charged Higgs	MFV NP	non-MFV NP $% \left({{{\rm{NP}}}} \right)$	NP in	Right-handed	LHT	SUSY					
	high $\tan\beta$	low $\tan\beta$	2-3 sector	Z penguins	currents		\mathbf{AC}	RVV2	AKM	δLL	FBMSSM	GUT-CMM
$\tau \rightarrow \mu \gamma$							* * *	* * *	*	* *	* * *	* * *
$\tau \rightarrow \ell \ell \ell$						* * *						?
$B \to \tau \nu, \mu \nu$	$\star \star \star (CKM)$											
$B \rightarrow K^{(*)+} \nu \overline{\nu}$			*	* * *			*	*	*	*	*	?
S in $B \rightarrow K_S^0 \pi^0 \gamma$			**		* * *							
S in other penguin modes			$\star\star\star(\mathrm{CKM})$		* * *		* * *	**	*	* * *	* * *	?
$A_{CP}(B \rightarrow X_s \gamma)$			***		**		*	*	\star	* * *	* * *	?
$BR(B \rightarrow X_s \gamma)$		*	**		*							**
$BR(B \rightarrow X_s \ell \ell)$			**	*	*							?
$B \to K^{(*)} \ell \ell ~({\rm FB~Asym})$							*	*	*	* * *	***	?
a_{sl}^s			***			* * *						***
Charm mixing							***	*	*	*	*	
CPV in Charm	**									* * *		

more information in arXiv:1008.1541, arXiv:0909.1333, and arXiv:0810.1312

Marco Ciuchini

IFAE 2012 – Ferrara, April 12

Conclusions

- intense experimental activity programmed for the next 20 years in all flavour sectors: entering the era of precision flavour physics
- * a serious challenge for theory to keep up with the expected experimental precision.
 Yet perspectives are encouraging
- * twofold goal:
 - study the flavour structure of new particles at the TeV scale
 - getting hint/evidence for the presence of NP in the multi-TeV region

Observable	Current value	Experiment	Precision	
$BR(B_s \to \mu\mu) \ (\times 10^{-9})$	$< \mathbf{X}^{a}$	LHCb	± 1	
	4.5	LHCb upgrade	± 0.3	
$2\beta_s \text{ from } B_s^0 \to J/\psi\phi \text{ (rad)}$	$0 \times 3 \pm 0. \times 9^{b}$	LHCb	0.019	
	0.002 0.038	LHCb upgrade	0.006	
$S \text{ in } B_s \to \phi \gamma ^*$		LHCb	0.07	
		LHCb upgrade	0.02	
$K^+ \to \pi^+ \nu \overline{\nu} \; (\% \; \text{BR measurement})$	7 events	NA62	100 events $(10%)$	
$K_L^0 o \pi^0 u \overline{ u}$		KOTO	3 events (observe)	
$BR(\mu \to e\gamma) \ (\times 10^{-13})$	< 2 2 24	MEG	< 1	
$R_{\mu e}$	$<7\times10^{-12}$	COMET/Mu2E	$< 6 \times 10^{-17}$	

Observable/mode	Current	LHCb	Super B	Belle II	LHCb upgrade	theory				
	now	(2017)	(2021)	(2021)	(10 years of	now				
		$5{\rm fb}^{-1}$	$75{ m ab}^{-1}$	$50 \mathrm{ab}^{-1}$	running) $50 \mathrm{fb}^{-1}$					
au Decays										
$\tau \to \mu \gamma \; (\times 10^{-9})$	< 44		< 2.4	< 5.0						
$\tau \to e \gamma \; (\times 10^{-9})$	< 33		< 3.0	< 3.7 (est.)						
$\tau \to \ell \ell \ell \ (\times 10^{-10})$	< 150 - 270	<244 a	<2.3-8.2	< 10	$< 24^{\ b}$					
$B_{u,d}$ Decays										
$BR(B \to \tau \nu) \ (\times 10^{-4})$	1.64 ± 0.34		0.05	0.04		1.1 ± 0.2				
$BR(B \to \mu\nu) \ (\times 10^{-6})$	< 1.0		0.02	0.03		0.47 ± 0.08				
$BR(B \to K^{*+} \nu \overline{\nu}) \; (\times 10^{-6})$	< 80		1.1	2.0		6.8 ± 1.1				
$BR(B \to K^+ \nu \overline{\nu}) \; (\times 10^{-6})$	< 160		0.7	1.6		3.6 ± 0.5				
$BR(B \to X_s \gamma) \ (\times 10^{-4})$	3.55 ± 0.26		0.11	0.13	0.23	3.15 ± 0.23				
$A_{CP}(B \to X_{(s+d)}\gamma)$	0.060 ± 0.060		0.02	0.02		$\sim 10^{-9}$				
$B \to K^* \mu^+ \mu^-$ (events)	250^{c}	8000	$10-15 k^d$	7-10k	100,000	-				
$BR(B \to K^* \mu^+ \mu^-) \ (\times 10^{-6})$	1.15 ± 0.16		0.06	0.07		1.19 ± 0.39				
$B \to K^* e^+ e^-$ (events)	165	400	10-15k	7-10k	5,000	-				
$BR(B \to K^* e^+ e^-) \ (\times 10^{-6})$	1.09 ± 0.17		0.05	0.07		1.19 ± 0.39				
$A_{FB}(B \to K^* \ell^+ \ell^-)$	0.27 ± 0.14^{e}	f	0.040	0.03		-0.089 ± 0.020				
$B \to X_s \ell^+ \ell^-$ (events)	280		8,600	7,000		-				
$BR(B \to X_s \ell^+ \ell^-) \ (\times 10^{-6})^g$	3.66 ± 0.77^h		0.08	0.10		1.59 ± 0.11				
$S \text{ in } B \to K^0_{\scriptscriptstyle S} \pi^0 \gamma$	-0.15 ± 0.20		0.03	0.03		-0.1 to 0.1				
$S \text{ in } B \to \eta' K^0$	0.59 ± 0.07		0.01	0.02		± 0.015				
$S \text{ in } B \to \phi K^0$	0.56 ± 0.17	0.15	0.02	0.03	0.03	± 0.02				
		E	B_s^0 Decays							
$BR(B_s^0 \to \gamma\gamma) \ (\times 10^{-6})$	< 8.7		0.3	0.2 - 0.3		0.4 - 1.0				
A_{SL}^{s} (×10 ⁻³)	$-7.87 \pm 1.96~^{i}$	j	4.	5. $(est.)$		0.02 ± 0.01				
D Decays										
x	$(0.63 \pm 0.20\%)$	0.06%	0.02%	0.04%	0.02%	$\sim 10^{-2 \ k}$				
y	$(0.75 \pm 0.12)\%$	0.03%	0.01%	0.03%	0.01%	$\sim 10^{-2}$ (see above).				
y_{CP}	$(1.11 \pm 0.22)\%$	0.05%	0.03%	0.05%	0.01%	$\sim~10^{-2}$ (see above).				
q/p	$(0.91 \pm 0.17)\%$	10%	2.7%	3.0%	3%	$\sim 10^{-3}$ (see above).				
$\arg\{q/p\}$ (°)	-10.2 ± 9.2	5.6	1.4	1.4	2.0	$\sim~10^{-3}$ (see above).				
Other processes Decays										
$\sin^2 \theta_W$ at $\sqrt{s} = 10.58 \text{GeV}/c^2$			0.0002	l		clean				

Marco Ciuchini

IFAE 2012 – Ferrara, April 12

Page 15

Observable/mode	Current	LHCb	Super B	Belle II	LHCb upgrade	theory
	now	(2017)	(2021)	(2021)	(10 years of running)	now
		$5{\rm fb}^{-1}$	$75{\rm ab}^{-1}$	$50 \mathrm{ab}^{-1}$	$50{\rm fb}^{-1}$	
α from $u\overline{u}d$	6.1°	$5^{\circ a}$	1°	1°	b	$1 - 2^{\circ}$
β from $c\overline{c}s$ (S)	$0.9^{\circ} (0.024)$	$0.5^{\circ} (0.008)$	$0.1^{\circ} (0.002)$	$0.3^{\circ} (0.007)$	$0.2^{\circ} \ (0.003)$	clean
S from $B_d \to J/\psi \pi^0$	0.21		0.014	0.021 (est.)		clean
S from $B_s \to J/\psi K_s^0$?			?	clean
γ from $B \to DK$	11°	$\sim 4^{\circ}$	1°	1.5°	0.9°	clean
$ V_{cb} $ (inclusive) %	1.7		0.5%	0.6 (est.)		dominant
$ V_{cb} $ (exclusive) %	2.2		1.0%	$1.2 \; (est.)$		dominant
$ V_{ub} $ (inclusive) %	4.4		2.0%	3.0		dominant
$ V_{ub} $ (exclusive) %	7.0		3.0%	5.0		dominant