### Mauro Mezzetto Istituto Nazionale di Fisica Nucleare, Sezione di Padova

### " Rassegna Sperimentale sulle Oscillazioni dei Neutrini"

Entirely devoted to  $\theta_{13}$ :

- Introduction
- Results from T2K and Minos at accelerators and Double Chooz, Daya Bay and RENO at reactors.
- Long term perspectives: Leptonic CP violation.
- Sterile neutrinos and experimental perspectives: see G. Sirri talk later this morning.

- $\theta_{13}$  was one of the few standard model parameters still unknown.
- It is one of the most discriminant parameters to select neutrino mass matrixes, a key ingredient to decide grand unified theories (if any).
- Non-zero  $\theta_{13}$  is necessary to build-up leptonic CP violation. The value (order of magnitude) of  $\theta_{13}$  is necessary to optimize new facilities to measure leptonic CP violation.

### Reactors vs Accelerators

Accelerators:  $\nu_e$  appearance

$$P_{\nu_{\mu} \to \nu_{e}} = 4c_{13}^{2}s_{13}^{2}s_{23}^{2}\sin^{2}\frac{\Delta m_{13}^{2}L}{4E} \times \left[1 \pm \frac{2a}{\Delta m_{13}^{2}}(1 - 2s_{13}^{2})\right] \qquad \theta_{13} \text{ driven}$$

$$+ 8c_{13}^{2}s_{12}s_{13}s_{23}(c_{12}c_{23}cos\delta - s_{12}s_{13}s_{23})\cos\frac{\Delta m_{23}^{2}L}{4E}\sin\frac{\Delta m_{13}^{2}L}{4E}\sin\frac{\Delta m_{12}^{2}L}{4E}\text{ CPer}$$

$$\mp 8c_{13}^{2}c_{12}c_{23}s_{12}s_{13}s_{23}\sin\delta\sin\frac{\Delta m_{23}^{2}L}{4E}\sin\frac{\Delta m_{13}^{2}L}{4E}\sin\frac{\Delta m_{12}^{2}L}{4E} \text{ CPodd}$$

$$+ 4s_{12}^{2}c_{13}^{2}\{c_{13}^{2}c_{23}^{2} + s_{12}^{2}s_{23}^{2}s_{13}^{2} - 2c_{12}c_{23}s_{12}s_{23}s_{13}cos\delta\}\sin\frac{\Delta m_{12}^{2}L}{4E} \text{ solar driven}$$

$$\mp 8c_{12}^{2}s_{13}^{2}s_{23}\cos\frac{\Delta m_{23}^{2}L}{4E}\sin\frac{\Delta m_{13}^{2}L}{4E}(1 - 2s_{13}^{2}) \text{ matter effect (CP odd)}$$

### Reactors: $\overline{\nu}_e$ disappearance

 $1 - P_{\overline{\nu}_e - \overline{\nu}_e} \simeq \sin^2 2\theta_{13} \sin^2(\Delta m_{31}^2 L/4E) + (\Delta m_{21}^2/\Delta m_{31}^2)^2 (\Delta m_{31}^2 L/4E)^2 \cos^4 \theta_{13} \sin^2 2\theta_{12}$ 

## Sub leading $u_{\mu} - u_{e}$ oscillations



$$\begin{aligned} \rho(\nu_{\mu} \to \nu_{e}) &= 4c_{13}^{2}s_{13}^{2}c_{23}^{2}\sin^{2}\frac{\Delta m_{13}^{2}L}{4E} \times \left[1 \pm \frac{2a}{\Delta m_{13}^{2}}(1 - 2s_{13}^{2})\right] & \theta_{13} \text{ driv} \\ &+ 8c_{13}^{2}s_{12}s_{13}s_{23}(c_{12}c_{23}\cos\delta - s_{12}s_{13}s_{23})\cos\frac{\Delta m_{23}^{2}L}{4E}\sin\frac{\Delta m_{13}^{2}L}{4E}\sin\frac{\Delta m_{12}^{2}L}{4E} \text{ CPert} \\ &\mp 8c_{13}^{2}c_{12}c_{23}s_{12}s_{13}s_{23}\sin\delta\sin\frac{\Delta m_{23}^{2}L}{4E}\sin\frac{\Delta m_{13}^{2}L}{4E}\sin\frac{\Delta m_{12}^{2}L}{4E} \text{ CPodd} \\ &+ 4s_{12}^{2}c_{13}^{2}\{c_{13}^{2}c_{23}^{2} + s_{12}^{2}s_{23}^{2}s_{13}^{2} - 2c_{12}c_{23}s_{12}s_{23}s_{13}\cos\delta\}\sin\frac{\Delta m_{12}^{2}L}{4E} \text{ solar driven} \\ &\mp 8c_{12}^{2}s_{13}^{2}s_{23}^{2}\cos\frac{\Delta m_{23}^{2}L}{4E}\sin\frac{\Delta m_{13}^{2}L}{4E}(1 - 2s_{13}^{2}) \text{ matter effect (CP odd)} \end{aligned}$$

 $\begin{array}{ll} \theta_{13} \mbox{ discovery requires a} \\ \mbox{signal} & (\propto & \sin^2 2\theta_{13}) \\ \mbox{greater than the solar} \\ \mbox{driven probability} \end{array}$ 

 $\begin{array}{l} \text{Leptonic CP discovery requires} \\ \textbf{A}_{CP} = \frac{P(\nu_{\mu} \rightarrow \nu_{e}) - P(\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e})}{P(\nu_{\mu} \rightarrow \nu_{e}) + P(\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e})} \neq 0 \end{array}$ 





# **CHOOZ** final results

- Analysis A  $\overline{\nu}_e$  spectrum after background subtraction. Both the absolute rate and the spectrum are used.
- Analysis B Uses the different baseline

 $(\Delta L = 117.7 \text{ m})$  of the two reactors. Many systematic errors cancel, but statistical errors are bigger and the  $\Delta m^2$  sensitivity is reduced by the shorter baseline.

• Analysis C Only spectrum information is used.

### 1450 citations: the top cited null result in hep ever !

### 1998 - 2011

No experiment had been able to improve the Chooz sensitivity. Even if 3 neutrino oscillation long-baseline projects had been setup in 3 continents:

- **K2K**: KEK to SuperKamiokaNDE: the first check of the discovery of neutrino oscillation in atmospheric neutrinos by using an artificial neutrino beam. The proton intensity was not enough to achieve a competitive sensitivity to  $\theta_{13}$ .
- **MINOS**: NuMI neutrino beam from Fermilab to the Minos detector. Aimed to improve the precision of the measurement of the atmospheric oscillation parameters  $\theta_{23}$  and  $\Delta m_{23}^2$ . The iron magnetized Minos detector was not optimized for the detection of electrons. Recently achieved a sensitivity on  $\theta_{13}$  similar to the CHOOZ sensitivity.
- **CNGS:** CNGS neutrino beam from CERN to the Opera and Icarus detectors at LNGS. The beam setup had been optimized for the  $\nu_{\tau}$  appearance searches and for this reason was not optimal for  $\theta_{13}$  searches.

### Predictions before exp. results



## The T2K Experiment



# T2K result, PRL 107 (2011) 041801



# MINOS, PRL 107 (2011) 181802



| pot         | MINOS<br>8.2 10 <sup>20</sup> | T2K<br>1.45 10 <sup>20</sup> |
|-------------|-------------------------------|------------------------------|
| tjoule      | 1.57                          | 0.07                         |
| tjoule kton | 7.85                          | 1.57                         |



# NOvA

- 57 m 15.7 m 15.7 m
- I 4 kt total mass, 70% scintillator
- 930 planes
- ~3 m water equivalent earth overburden of barite and concrete



FNAL NuMI off-axis beam
Power upgrade 320kW→700kW
Recycler: anti-proton → proton
Rep cycle 2.2s → 1.33s
New 14kton liquid scintillator fine grained detector @810km
Far detector will complete and start taking data in 2014





### The three reactor players

| Setup        | $P_{\mathrm{Th}}$ [GW] | <i>L</i> [m] | $m_{ m Det}$ [t] | Events/year     | Backgrounds/day |
|--------------|------------------------|--------------|------------------|-----------------|-----------------|
| Daya Bay     | 17.4                   | 1700         | 80               | $10 \cdot 10^4$ | 0.4             |
| Double Chooz | 8.6                    | 1050         | 8.3              | $1.5\cdot 10^4$ | 3.6             |
| RENO         | 16.4                   | 1400         | 15.4             | $3 \cdot 10^4$  | 2.6             |





# **Double Chooz**

### Talk by J. Dawson



### 2 cores - 1 site - 8.5 GW<sub>th</sub>

### 1 near position, 1 far

- target: 2 x 8.3 t
   Civil engineering
- 1 near lab ~ Depth 40 m, Ø 6 m
- 1 available lab

### Statistics (including ɛ)

- far: ~ 40 evts/day
- near: ~ 460 evts/day

### Systematics

- reactor : ~ 0.2%
- detector : ~ 0.5%

### Backgrounds

- $\sigma_{b2b}$  at far site: ~ 1%
- $\sigma_{h2h}$  at near site: ~ 0.5%

### Planning

- 1. Far detector only
- Sensitivity (1.5 ans) ~ 0.06
- 2. Far + Near sites
  - available from 2010
  - Sensitivity (3 years) ~ 0.025

### RENO



Mauro Mezzetto (INFN Padova)

Rassegna Sperimentale sulle Oscillazioni dei Neutrini

# Daya Bay



### **Reactor detectors**



### **Experimental Results**

T2K ( $\theta_{13} > 0$  @ 2.5 $\sigma$ ) Expected events: 1.5, Detected 6

**Double Chooz (1.3** $\sigma$ ) Expected events: 4344, Detected 4101  $R_{DC} = 0.944 \pm 0.016(\text{stat}) \pm 0.040(\text{syst})$ 

Daya Bay (5.2 $\sigma$ ) Expected events: 85506, Detected 80376  $R_{DB} = 0.940 \pm 0.011(\text{stat}) \pm 0.004(\text{syst})$ 

### **RENO (4.**9 $\sigma$ ) Expected events:149905, Detected 137912 $R_R = 0.920 \pm 0.009(\text{stat.}) \pm 0.014(\text{syst.})$

# Spectral information

Not used in the fit



Summary of  $\theta_{13}$  results Computed for  $\Delta m^2_{23} = 2.4 \cdot 10^{-3} \text{ eV}^2$ 



### Reactors vs Accelerators: 2018



# 

# $\begin{array}{l} \label{eq:posterior} \mbox{The third necessary condition has just been fulfilled !} \\ \mbox{$V_{\mu}$-$V_e$ oscillations in a 3 $v$ scheme} \\ \mbox{$p(v_{\mu} - v_e)$ = $4c_{13}^2s_{13}^2s_{23}^2\sin^2\frac{\Delta\,m_{13}^2L}{4E}$ \times $\left[1\pm\frac{2a}{\Delta\,m_{13}^2}(1-2s_{13}^2)\right]$ $\theta_{13}$ driven} \\ \mbox{$+ $8c_{13}^2s_{12}s_{13}s_{23}(c_{12}c_{23}cos\delta-s_{12}s_{13}s_{23})$ cos $\frac{\Delta\,m_{23}^2L}{4E}$ sin $\frac{\Delta\,m_{13}^2L}{4E}$ sin $\frac{\Delta\,m_{12}^2L}{4E}$ CPeven $\frac{\Delta\,m_{13}^2L}{4E}$ codd $\frac{\Delta\,m_{12}^2L}{4E}$ codd $\frac{\Delta\,m_{12}^2L}{4E}$ codd $\frac{\Delta\,m_{12}^2L}{4E}$ sin $\frac{\Delta\,m_{12}^2L}{4E}$ codd $\frac{\Delta\,m_{12}^2L}{4E}$ solar driven $\frac{\Delta\,m_{12}^2L}{4E}$ sin $\frac{\Delta\,m_{12}^2L}{4E}$ codd $\frac{M\,m_{12}^2L}{4E}$ solar driven $\frac{\Delta\,m_{12}^2L}{4E}$ sin $\frac{\Delta\,m_{12}^2L}{4E}$ solar driven $\frac{\Delta\,m_{12}^2L}{4E}$ solar dri$

SK, PRL 81(1998) 1562 (3558 citations)





Mauro Mezzetto (INFN Padova)

The third necessary condition has just been fulfilled !



Mauro Mezzetto (INFN Padova)

Rassegna Sperimentale sulle Oscillazioni dei Neutrini

# Status after this generation of LBL experiments: CPV



# Status after this generation of LBL experiments: CPV



# Status after this generation of LBL experiments: CPV



### Status after accelerator upgrades

From P. Huber et al., JHEP 0911:044,2009.

Prediction of sensitivity including a **fully optimized global run** (antineutrinos in T2K and NO $\nu$ A) and **full upgrade of the accelerators**: 1.6 MW at J-PARC and 2.4 MW at FNAL (Project-X)



### Status after accelerator upgrades

From P. Huber et al., JHEP 0911:044,2009.

Prediction of sensitivity including a **fully optimized global run** (antineutrinos in T2K and NO $\nu$ A) and **full upgrade of the accelerators**: 1.6 MW at J-PARC and 2.4 MW at FNAL (Project-X)

| (· · · J    |                                    | -)                                                                                                                                                                                                                                                         |                  |                          |       |              |                                    |      |          |  |
|-------------|------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--------------------------|-------|--------------|------------------------------------|------|----------|--|
|             | Mass Hieroreby discourse NH (3 CI) |                                                                                                                                                                                                                                                            |                  | CPV discovery NH (3g CL) |       |              |                                    |      |          |  |
| 1<br>0.8    | GLof                               | Even a full upgrade of the accelerators and long optimized runs cannot guarantee<br>a succesfull search of leptonic CP violation.<br>New detectors, bigger more of one order of magnitude than the existings, are<br>needed to achieve good sensitivities. |                  |                          |       |              |                                    |      |          |  |
| ይ           |                                    | Experimental possibilities                                                                                                                                                                                                                                 |                  |                          |       |              |                                    |      |          |  |
| ශී<br>බ 0.6 |                                    | Technology                                                                                                                                                                                                                                                 | Detector         | Mass                     | Since | Future       | Mass                               | - e  | <u> </u> |  |
| ž           | -                                  |                                                                                                                                                                                                                                                            |                  | (kton)                   |       |              | (kton)                             |      | <b>5</b> |  |
| ੁ<br>ਰ      |                                    | Water Ceren                                                                                                                                                                                                                                                | Super Kamiokande | 25                       | 1996  | HyperK       | 500                                | -    |          |  |
| Š.          | 1                                  |                                                                                                                                                                                                                                                            |                  |                          |       | (Memphys)    |                                    |      | 1        |  |
| ÷.0 Ω       | İ                                  | Liquid Argon                                                                                                                                                                                                                                               | lcarus           | 0.5                      | 2010  | Glacier      | 100                                |      | 1        |  |
| Ë.          |                                    | Liquid Scintillator                                                                                                                                                                                                                                        | Kamland          | 1                        | 2000  | Lena         | 50                                 |      |          |  |
|             | -                                  |                                                                                                                                                                                                                                                            | Borexino         | 0.5                      | 2006  |              |                                    |      |          |  |
| 0.2         | 1                                  | Iron Magnetized                                                                                                                                                                                                                                            | Minos            | 5                        | 2003  | Mind         | 100                                |      |          |  |
|             |                                    |                                                                                                                                                                                                                                                            |                  |                          |       |              |                                    |      | j        |  |
| 0           |                                    | ~~ 202                                                                                                                                                                                                                                                     | 21 2019          | 0                        |       |              |                                    |      |          |  |
| Ŭ           | 0                                  | 0.02 0.04 0.06                                                                                                                                                                                                                                             | 0.08 0.1         | ŬΟ                       | 0.02  | 0.04         | 0.06                               | 0.08 | 0.1      |  |
|             |                                    | True value of sin <sup>2</sup> 2                                                                                                                                                                                                                           | 20 <sub>13</sub> |                          |       | True value o | of sin <sup>2</sup> $2\theta_{13}$ |      |          |  |

### Status after accelerator upgrades

From P. Huber et al., JHEP 0911:044,2009.

Prediction of sensitivity including a **fully optimized global run** (antineutrinos in T2K and NO $\nu$ A) and **full upgrade of the accelerators**: 1.6 MW at J-PARC and 2.4 MW at FNAL (Project-X)



Mauro Mezzetto (INFN Padova)

### Measuring Leptonic CP violation



LCPV asymmetry at the first oscillation maximum,  $\delta = 1$ , Error curve: dependence of the statistical+systematic (2%) computed for a beta beam the fixed energy  $E_{II} = 0.4$  GeV, L = 130 km.

### Measuring Leptonic CP violation



LCPV asymmetry at the first oscillation maximum,  $\delta = 1$ , Error curve: dependence of the statistical+systematic (2%) computed for a beta beam the fixed energy  $E_{IJ} = 0.4$  GeV, L = 130 km.

 The detection of such asymmetry is an evidence of Leptonic CP violation only in absence of competitive processes (i.e. matter effects, see following slides) ⇒ "short" Long Baseline experiments

## Measuring Leptonic CP violation



LCPV asymmetry at the first oscillation maximum,  $\delta = 1$ , Error curve: dependence of the statistical+systematic (2%) computed for a beta beam the fixed energy  $E_{IJ} = 0.4$  GeV, L = 130 km.

- The detection of such asymmetry is an evidence of Leptonic CP violation only in absence of competitive processes (i.e. matter effects, see following slides) ⇒ "short" Long Baseline experiments
- Statistics and systematics play different roles at different values of  $\theta_{13} \Rightarrow$  impossible to optimize the experiment without a prior knowledge of  $\theta_{13}$
- Contrary to the common belief, the highest values of  $\theta_{13}$  are not the easiest condition for LCPV discovery

### **Possible Strategies**

### "Short" Long Baselines: HyperKamiokaNDE, CERN-Frejus

Measure mass hierarchy and  $\theta_{23}$  octant with atmospheric neutrinos in a gigantic water Cerenkov detector.

Measure CPV with beam neutrinos at short baselines, where any  $\nu - \overline{\nu}$  asymmetry is entirely due to leptonic CP violation (negligible matter effects).

### "Long" Long Baselines: LBNE, CERN-Phyasalmi

Measure mass hierarchy and leptonic CP violation with beam neutrinos (what about  $\theta_{23}$  octant degeneracy?) achieving very good sensitivity on mass hierarchy with some compromise with CPV sensitivity.

**Strong interest** on new concepts for future facilities like Beta Beams and Neutrino Factories.

# HyperKamiokaNDE

Letter of Intent: arXiv:1109.3262

J-Parc 30 GeV proton accelerator upgraded at 1.66 MW

540 kton water Cerenkov detector built at the same distance and off-axis angle as Super Kamiokande.



Challenge: push systematic errors at 5% (T2K first result published with 16% systematic errors)

Outstanding performances for proton decays, solar neutrinos, supernova neutrinos etc.

### HyperKamiokaNDE: CPV sensitivity



# European Super Beam Options

### **CERN-Frejus:**

- A 570 kton water Cerenkov detector at Frejus, Memphys (130 km from CERN)
- A neutrino super beam by the SPL 4MW Linac.
- Eventually fire a Beta Beam to the same detector.

### **CERN-Phyasalmi:**

- A 100 kton liquid argon detector at Phyasalmi (2290 km from CERN)
- A neutrino super beam by a 1.6 MW, 50 GeV, synchrotron.
- As a first stage build a 10 kton LAr detector and fire a CNGS like neutrino beam (maybe using SPS protons)

No serious study about **CP at LNGS** so far (but just wait for the NuTurn workshop at LNGS, 8-10 May, 2012).

None of the two accelerators is in the LHC upgrade plan so far.

# CERN-Phyasalmi (arXiv:1109.6526)

First stage: mass hierarchy with a 10-20 kton LAr detector



Second stage: CPV with a 100 kton LAr detector



Mauro Mezzetto (INFN Padova)

Rassegna Sperimentale sulle Oscillazioni dei Neutrini

# Precision on measuring $\delta_{\mathrm{CP}}$

From P. Coloma et al., arXiv:1203.565



### Conclusions

The measurement of  $\theta_{13}$  solves one of the few question marks still left in the standard model. Among the many fondamental consequences, it opens the door to future long-baseline neutrino experiments addressing leptonic CP violation.

Five experimental results in the past 9 months, coming from accelerators and reactors, provided exciting information about  $\theta_{13}$ .

Leptonic CP violation, measurable only at accelerators, will require challenging experimental improvements. The optimization of future facilities is now possible by knowing the  $\theta_{13}$  value.

A worldwide effort is ongoing with multiple proposals in three different continents.