

NFN

Recents Charm Results from the B factories

Nicola Neri INFN - Sezione di Milano on behalf of the BaBar collaboration

IFAE 2012 - Incontri di Fisica delle Alte Energie Ferrara, 11 - 13 Aprile 2012

Outline

Introduction:

Charm Physics and searches for Physics beyond the Standard Model

Recent results from the B factories:

- ▶ BaBar
 - Search for CP violation in $D^+ \rightarrow K_s \pi^+$;
 - ▶ Search for T/CP violation in $D_{(s)}^+ \rightarrow K_S K^+ \pi^+ \pi^-$;

Search for flavor-changing neutral current (FCNC) processes (in backup slides):
 □ D⁰→YY;

 $\Box c \rightarrow ul^+l^-$ transitions.

- Belle
 - Evidence of CP violation in $D^+ \rightarrow K_s \pi^+$;
 - ▶ Search for CP violation in $D^0 \rightarrow K_S \pi^0$, $K_S \eta$, $K_S \eta$;
 - Search for CP violation in D meson decays $D_{(s)}^+ \rightarrow \pi^+ \varphi$;
 - Search for CP violation in D meson decays $D^+ \rightarrow \pi^+ \eta^{()}$.

Summary

Introduction

Nicola Neri - Recent Charm Results from the B factories

II April 2012

Charm Physics and searches for Physics and searches for Physics

- Recent evidence of CP violation (CPV) in D⁰ decays has renewed the interest for searching new physics in the charm sector:
 - observed asymmetries are marginally compatible with the SM but not conclusive for establishing new Physics.
- Some hot topics in Charm Physics:
 - Search for CP violation in Single Cabibbo Suppressed (SCS) decays, uniquely sensitive to new physics through tree-penguin interference:
 - measure CP asymmetries in individual decay modes and keep improving precision;
 - ▶ measure additional decay modes with similar quark transitions: c→u d dbar, c→u s sbar.
 - Search for Flavor Changing Neutral Current (FCNC) decays, highly suppressed in the standard model: (in backup slides)
 - however difficult to calculate SM long distance contributions.

Understanding origin of CPV in SCS decays

- Enrico Franco, Satoshi Mishima and Luca Silvestrini <u>arXiv:1203.3131</u>
- Gino Isidori, Jernej F. Kamenik Zoltan Ligeti and Gilad Perez arXiv:1111.4987

Another important experimental handle to decide whether the observed signal can or cannot be accommodated in the SM would be observing or constraining CP violation in other decay modes. corresponding to the same quark-level transitions.

c Tree d c Penguin u

Decays that are accessible at the B factories, not a complete list!

- $D^0 \rightarrow \pi^+ \pi^-, \pi^+ \pi^- \pi^0, 2\pi^+ 2\pi^-, 2\pi^0$
- $D^+ \rightarrow \pi^+ \pi^0$, $\pi^+ \eta$, $\pi^+ \eta'$, $2\pi^+ \pi^-$, $2\pi^+ \pi^- \pi^0$
- $D_s^+ \rightarrow K_s \pi^+, K^+ \pi^+ \pi^-, K_s \pi^+ \pi^0, K^+ \pi^0, K^+ \eta, K^+ \eta'$
- Λ_c⁺→pπ⁺π⁻, p2π⁺2π⁻

- $D^0 \rightarrow K^+K^-, K^+K^-\pi^0, K_sK^-\pi^+, K_sK^+\pi^-$

 $D_s^+ \rightarrow 2K^+K^-$

 $\Lambda_{c}^{+} \rightarrow pK^{+}K^{-}$

- $D^+ \rightarrow K_s K^+, \pi^+ \Phi, K^+ K^- \pi^+ \pi^0, K_s K^+ \pi^+ \pi^-$

Nicola Neri - Recent Charm Results from the B factories

CP violation in D decays with a K_S in final state

- CP asymmetry in charm decays with a K_s in the final state is expected to be (-0.332±0.006)% due to CPV in K⁰-K⁰ mixing.
- Sizable difference from this value would indicate CP violation in the Δc transition (very small in the SM) indicating possible new physics effects.

$$\begin{aligned} Example: D^+ \to K_S^0 \pi^+ \\ A_{CP}^{D^+ \to K_S^0 \pi^+} &\equiv \frac{\Gamma(D^+ \to K_S^0 \pi^+) - \Gamma(D^- \to K_S^0 \pi^-)}{\Gamma(D^+ \to K_S^0 \pi^+) + \Gamma(D^- \to K_S^0 \pi^-)} \\ &= \left(A_{CP}^{\Delta C} + A_{CP}^{\bar{K}^0} \right) \end{aligned} \qquad \begin{array}{c} c \\ D^+ \\ \hline Cabibbo \ Favored \ (CF) \ diagram \\ \hline D^+ \\ \hline d \\ \hline \end{array} \end{aligned} \qquad \begin{array}{c} c \\ M^+ \\ \hline d \\ \hline \end{array} \end{aligned} \qquad \begin{array}{c} c \\ M^+ \\ \hline d \\ \hline \end{array} \end{aligned} \qquad \begin{array}{c} c \\ R^0 \\ \hline d \\ \hline \end{array} \end{aligned}$$

Doubly Cabibbo Suppressed (DCS) diagram

Recent results

Nicola Neri - Recent Charm Results from the B factories

11 April 2012

8

Search for CP violation in $D^+ \rightarrow K^0 {}_S \pi^+$

CP violation asymmetry

FW-BW asymmetry due to γ -Z interference and to detector efficiency asymmetry

Search for CP violation in $D^+ \rightarrow K^0 {}_S \pi^+$

Systematic errors	
Source	$\sigma_{A_{CP}}(\%)$
$\overline{A_{\epsilon}^{\pi^+}}$ determination	0.064
Fitting	0.003
$\cos \theta_{D^+}^{\rm CMS}$ binning	0.008
$A_{\mathcal{D}}$ correction	0.016
Total	0.067

• $A_{D is}$ due to different K^0 - $\overline{K^0}$ interaction with material •Asymmetry due to neutral kaons to be corrected with acceptance effects as a function of K_S decay time by (1.040±0.005) Y. Grossman and Y. Nir, arXiv:1110.3790

Phys. Rev. Lett. 106, 211801 (2011) 79 | fb^{-|} INFN BELLE Search for CPV in $D^0 \rightarrow K^0_S P^0$ decays Distributions of the mass difference $M(D^*) - M(D)$ A^{D⁰→K}s^{n⁰} AB⁺ Events/(0.2 MeV/c²) 0.05 326K $K_S\pi^0$ D^0 $\overline{\mathsf{D}}^0$ -0.05 -0.05 ^{0.5} lcosθ^{CMS} ^{0.5} Ιcosθ_{D*+} 0.14 0.145 0.15 M(K⁰_S $\pi^{0}\pi^{+}_{s}$)-M(K⁰_S π^{0}) (GeV/c²) 0.14 0.145 0.15 M($K_{s}^{0}\pi^{0}\pi_{s}^{-}$)-M($K_{s}^{0}\pi^{0}$) (GeV/c²) A_{CP}^{D^0 \to K_S^0 \eta} A^{D;⁺} Events/(0.2 MeV/c²) 0.05 3000 **46**K Ksη 2000 1000 -0.05 -0.05 ^{0.5} Ιcosθ_{D*+} ^{0.5} Ιcosθ_{D*+} 14 0.145 0.15 Μ(Κ^ο_Sηπ_s)-Μ(Κ^o_Sη) (GeV/c²) .14 0.145 0.15 Μ(Κ^οηπ_s)-Μ(Κ^οη) (GeV/c²) 014 0.14 A_{CP}^{D^0 → K_S^0 \eta'} A^{D,}⁺ Events/(0.2 MeV/c²) 0.05 2000 27K K_Sη' 1000 -0.05 -0.05 ^{0.5} Icosθ^{CMS}I l^{0.5} l^{COS}θ^{CMS}_{D^{*+}}Ι 0.14 0.145 0.15 M(K⁰_sη'π_s)-M(K⁰_sη') (GeV/c²) 0.14 0.145 0.15 Μ(K⁰_Sη'π_s)-Μ(K⁰_Sη') (GeV/c²) 0.14 Belle (%) $K_S^0\eta'$ (%) $K_S^0 \pi^0$ $K_{S}^{0}\eta$ (%) Source (%) $\rightarrow K_S^0 \pi^0$ $A_{\epsilon}^{\pi_s^+}$ determination 0.080.08 0.08 $-0.28 \pm 0.19 \pm 0.10$ Fitting 0.020.120.10 $\cos \theta_{D^{*+}}^{\text{CMS}}$ binning $+0.54 \pm 0.51 \pm 0.16$ 0.01 0.03 < 0.01 K^0/\bar{K}^0 -material effects 0.06 0.06 0.06 $K^0_S \eta$ $+0.98 \pm 0.67 \pm 0.14$ Total 0.100.160.14

Time-integrated CPV measurements at the B factories

 $D_{(s)}^+$ modes: direct CPV

D⁰ modes: direct + indirect CPV

At the B factories was found evidence of CP violation in $D^+ \rightarrow K_S^0 \pi^+$ decays. Systematic errors kept under control below the 10⁻³ level.

Search for CPV using T-odd correlations in $D_{(s)}^+ \rightarrow K^+ K_S \pi^+ \pi^-$ decays

I.I. Bigi hep-ph/0107102 (2001)

W. Bensalem, A. Datta and D. London, Phys. Rev. D66, 094004 (2002)
W. Bensalem and D. London, Phys. Rev. D64, 116003 (2001)
W. Bensalem, A. Datta and D. London, Phys. Lett. B538, 309 (2002)

- It is a measurement of T violation and of CP violation assuming CPT is conserved.
- T-odd observable: $C_T = \vec{p}_{K^+} \cdot (\vec{p}_{\pi^+} \times \vec{p}_{\pi^-})$

$$A_T = \frac{\Gamma(D^+_{(s)}, C_T > 0) - \Gamma(D^+_{(s)}, C_T < 0)}{\Gamma(D^+_{(s)}, C_T > 0) + \Gamma(D^+_{(s)}, C_T < 0)}$$

measured on D^+

- Final state interaction (FSI) could introduce fake T-odd asymmetries $A_T \neq 0$.
- T-violating observable, removes FSI effects:

$$\mathcal{A}_T = \frac{1}{2} (A_T - \bar{A}_T)$$
 measured on D-

11 April 2012

4.56 5.66 7.18 3.43 8.25 Nicola Neri - Recent Charm Results from the B factories 10.67

Total

Conclusions

Nicola Neri - Recent Charm Results from the B factories

11 April 2012

- Recent evidence of CPV in Charm decays has renewed the interest for searching for new physics in the Charm sector.
- The B factories are contributing in the understanding and possibly constraining the SM effects by measuring CPV observables and studying also decay modes that are not easily accessible at the LHC.
- An overview of the recent B factories results has been presented covering CP violation searches in Charm decays.
- Evidence of CPV in $D^+ \rightarrow K_S \pi^+$ was found at the B factories (3.2 σ Belle, 2.9 σ BaBar).
- Present results are in agreement with Standard Model expectations within the uncertainties.

Backup slides

Nicola Neri - Recent Charm Results from the B factories

11 April 2012

Physics motivations for studying $D^0 \rightarrow \gamma \gamma$ decay

• FCNC Decay

INFN

- Forbidden at the tree-level
- 1-loop GIM suppressed
- Dominated by long distance effects [1]
 - Short-range (2-loop dominate): B(D⁰-> $\gamma\gamma$) \approx 3 X 10⁻¹¹
 - Long-range (VMD contribution dominates):

B(D⁰-> γγ) \approx 3.5 X 10⁻⁸

- However, possible 10² enhancement from new physics (gluino-exchange of MSSM) [2]
- Within the range of BaBar sensitivity.
- Excellent (but difficult) mode to search for new physics

[1] Burdman et al. hep-ph/0112235v2 1 Mar 2002
[2] S. Prelovsek and D. Wyler, hep-ph/0012116v1 11 Dec 2000

BABAR.

Physics interest in searching for FCNC decays

Search for Flavor-Changing Neutral-Current (FCNC) decays FCNC decays only occur in loop diagrams in SM:

Charm decays heavily GIM suppressed in SM: $BF(c \rightarrow ull) \sim 10^{-8}$

New physics can introduce new particles into loop

Some models increase BF($c \rightarrow ull$) to 10⁻⁶-10⁻⁵

Also look for exotic decays violating lepton flavor and/or lepton number

INF

Standard Model predictions for signal and bkg

• While FCNC predicted to be low in SM, do have contribution from leptonic decays of intermediate resonances in $D_{(s)}^+ \rightarrow h^+ V, V \rightarrow l^+ l^-$

At current sensitivity, only ϕ resonance contributes Can be removed by cut on l^+l^- invariant mass

Validating the analysis using control modes

- - Reverse l⁺l⁻ mass cut: 0.995<m(e⁺e⁻)<1.030 GeV/c² 1.005<m(μ⁺μ⁻)<1.030 GeV/c²
- Significant signal seen in 3 of 4 modes
- · Yield is about as expected
 - 1.5 σ low in $D_s^+ \rightarrow \pi \phi$, $\phi \rightarrow e^+ e^-$

384 fb⁻¹ Phys. Rev. D 84, 07200 (2011)

Decay mode	Yield (events)	Efficiency (%)	Expected yield (events)
$D^+ \to \pi^+ \phi_{e^+e^-}$	$21.8 \pm 5.8 \pm 1.5$	5.65	22.2 ± 1.1
$D^+ \rightarrow \pi^+ \phi_{\mu^+\mu^-}$	$7.5 \pm 3.4 \pm 1.4$	1.11	4.5 ± 0.4
$D_s^+ \to \pi^+ \phi_{e^+e^-}$	$62.8 \pm 9.9 \pm 3.0$	6.46	79 ± 3
$D_s^+ \to \pi^+ \phi_{\mu^+\mu^-}$	$12.7 \pm 4.3 \pm 2.6$	1.07	13.1 ± 1.2

Nicola Neri - Recent Charm Results from the B factories

11 April 2012

Fit results and comparison with previous limits

- Most channels improve upon previous limits
 - Many modes by more than order of magnitude
 - Dimuon modes have the worst limits (lowest efficiency)

New	Phys Roy \mathbf{I} XA \mathbf{I} / \mathbf{III} / \mathbf{IIII}	
340 E033		201 E-
240 5652		
630 E791		
630 E791	$\Lambda_c^+ \to \overline{p}\mu^+ e^+$ 16	results
36 FOCUS	$\Lambda_c^+ \to \overline{p}\mu^+\mu^+$ 9.4	
52 CLEO-c	$A_c^+ \to \overline{p}e^+e^+$ 2.7	
68 E791	$D_s^+ \rightarrow K^- \mu^+ e^+$ 6.1	680 F791
68 E791	$D_s \rightarrow K^- e^+ e^- = 0.2$ $D_s^+ \rightarrow K^- \mu^+ \mu^+ = 13$	13 FOCUS
9.2 FOCUS	$D^+ \rightarrow K^- e^+ e^+$ 5.2	130 E007
3.0 CLEO-c	$D^+ \rightarrow K^- \mu^+ \mu^- = 10$ $D^+ \rightarrow K^- \mu^+ e^+ = 1.9$	13 FUCUS
610 E791	$D^+ \rightarrow K^- e^+ e^+ \qquad 0.9$ $D^+ \rightarrow K^- u^+ u^+ \qquad 10$	3.0 CLEU-C
610 F791	$D_s \rightarrow \pi \ \mu^+ e^+ \qquad 8.4$ $D_s^+ \rightarrow K^- e^+ e^+ \qquad 0.0$	730 E791
	$D_s^+ \rightarrow \pi^- \mu^+ \mu^+$ 14 $D_s^+ \rightarrow \pi^- \mu^+ e^+$ 8.4	29 FOCUS
34 E/91	$D_s^+ \to \pi^- e^+ e^+ \qquad 4.1$	18 CLEO-c
34 E791	$D^+ \to \pi^- \mu^+ e^+ \qquad 2.0$	50 E791
3.9 DU	$D^+ \to \pi^- \mu^+ \mu^+ \qquad 2.0$	4.8 FOCUS
5.9 CLEO-C	$D^+ \to \pi^- e^+ e^+ \qquad 1.9$	1.1 CLEO-c
	Decay mode 90% CL	
	(10^{-5})	
		$\begin{array}{c c} & & BF UL \\ & & (10^{-6}) \\ Decay mode & 90\% CL \end{array}$

New Limits approach theoretically interesting region

PEP-II is an asymmetric-energy B factory The BaBar Detector at SLAC running mostly at the $\Upsilon(4S)$ 1.5 T solenoid (10.58 GeV) with a center-of-mass boost Calorimeter (superconducting) 6580 CsI(Tl) crystals with $\beta\gamma=0.55$ Cherenkov e+ (3.1 GeV) Detector 144 quartz bars 11,000 PMTs **SLAC/LBL/LLNL B FACTORY** Silicon Vertex Tracker e⁻ (9 GeV) 5 double-sided lavers Drift Chamber 40 lavers Instrumented Flux Return 18-19 layers Particle Detecto SVT: 97% efficiency, 15 μm z hit resolution (inner layers, perp. tracks) lectrons SVT+DCH: $\sigma(p_T)/p_T = 0.13 \% \times p_T + 0.45 \%, \sigma(z_0)=65 \mu m@ IGeV/c$ High Energy Ring DIRC: K-π separation 4.2 σ @ 3.0 GeV/c \rightarrow 2.5 σ @ 4.0 GeV/c **SLAC Site** EMC: $\sigma_{\rm F}/{\rm E}$ = 2.3 % · E^{-1/4} \oplus 1.9 %

