

B decays with neutrinos

Guglielmo De Nardo University of Napoli "Federico II" and INFN

Incontri di Fisica delle Alte Energie 2012 February 11th 2012, Ferrara, Italy

Outline

- Description of the tagging method
- Leptonic B decays
 - Experimental status
 - Implications on NP models (Charged Higgs search)
 - Extrapolation of Super Flavour Factories sensitivity
- $b \rightarrow s v v$ decays
 - Experimental status
 - Implication on NP models
 - Extrapolation of Super Flavour Factories sensitivity

Tagging method

Tagging method

- Weak signal signature
 - Decay with missing momentum (many neutrinos in the final state)
 - Lack of kinematics constraints in final state
- background rejection improved identifying the companion B
- Look for signal in the rest of the event
 - Expect to find nothing more than visible signal decay products and no extra activity in the calorimeter

Guglielmo De Nardo - B decays with (many) neutrinos - IFAE 2012 - Apr 11th 2012, Ferrara, Italy

Fully reconstructed hadronic and semileptonic modes

- Semileptonic B decays
 - $B \rightarrow D^* | v$
 - PRO: Higher efficiency ε_{tag} ~ 1.5% CON: more backgrounds, B momentum unmeasured

- X is a charged system of hadrons among (π, K, π^0, K_s) up to 5 charged particles and 2 neutrals
- PRO: cleaner events, B momentum reconstructed CON: smaller efficiency $\epsilon_{tag} \sim 0.15\%$

Fully reconstructed hadronic and semileptonic modes

Hadronic tags:

- Full reconstruction of the B decay chain.
- Requirements on the quality of the tag are analysis dependent
- Separate the mis-reconstructed tags from correct (peaking) tags in data

Semileptonic tags:

Recontruct the D-I pair (Y) Kinematics and known B meson energy determine the angle between B and Y.

$$\cos\theta_{B,Y} = \frac{2E_{B}E_{Y} - m_{B}^{2} - m_{Y}^{2}}{2|\vec{p}_{B}||\vec{p}_{Y}|}$$

Leptonic B decays

Leptonic B decays

• B \rightarrow lv very clean theoretically. The only uncertainty in the B decay constant f_B

• Interesting probe of physics beyond the SM, since also a charged Higgs can mediate the decay

$$\begin{split} \mathcal{B}(B \to l\nu)_{2HDM} &= \mathcal{B}(B \to l\nu)_{SM} \times (1 - tan^2 \beta \frac{m_B^2}{m_H^2})^2 \\ \mathcal{B}(B \to l\nu)_{SUSY} &= \mathcal{B}(B \to l\nu)_{SM} \times (1 - \frac{tan^2 \beta}{1 + \epsilon_0 tan\beta} \frac{m_B^2}{m_H^2})^2 \end{split} \overset{\mathsf{b}}{\mathsf{B}^{\mathsf{t}}} \underbrace{\mathsf{h}^{\mathsf{t}}}_{\mathsf{u}} \underbrace{\mathsf{h}^{\mathsf{t}}}_{\mathsf{v}_{\mathsf{e}}} \underbrace{\mathsf{h}^{\mathsf{t}}}_{\mathsf{v}_{\mathsf{v}}} \underbrace{\mathsf{h}^{\mathsf{t}}}_{\mathsf{v}_{\mathsf{v}}} \underbrace{\mathsf{h}^{\mathsf{t}}}_{\mathsf{v}_{\mathsf{v}}} \underbrace{\mathsf{h}^{\mathsf{t}}}_{\mathsf{v}_{\mathsf{v}}} \underbrace{\mathsf{h}^{\mathsf{t}}}_{\mathsf{v}_{\mathsf{v}}} \underbrace{\mathsf{h}^{\mathsf{t}}}_{\mathsf{v}_{\mathsf{v}}} \underbrace{\mathsf{h}^{\mathsf{t}}}_{\mathsf{v}_{\mathsf{v}}} \underbrace$$

- B $\rightarrow \tau v$ used in global UT fits. B $\rightarrow \mu v$ out of reach of current B-factories
- Current measurements already exclude regions of M_H tan β plane

Tipical signal selection and fit strategy

- Exploit kinematics and topology of in the signal side
 - Single charged tracks passing particle identification criteria
 - Requirement on CMS momentum for 1 prong modes
 - More constraints for $\tau \rightarrow \pi \pi^0 v$
- Most discriminating variable residual energy in the calorimeter (E_{extra})
 - Defined as the total energy of clusters passing a minimum energy requirement
 - Used in a maximum likelihood fit to determine the branching fraction
- E_{extra} distribution validated with the use of double-tagged events
- Simultaneous fit of the BF to E_{extra}

$$\mathcal{L}_{k} = e^{-(n_{s,k} + n_{b,k})} \prod_{i=1}^{N_{k}} \left\{ n_{s,k} \mathcal{P}_{k}^{s}(E_{i,k}) + n_{b,k} \mathcal{P}_{k}^{b}(E_{i,k}) \right\}$$
$$n_{s,k} = N_{B\overline{B}} \times \epsilon_{k} \times BF$$

Branching ratio with hadronic tags from BaBar

- Combinatorial background estimated from data, B⁺ background shape from MC
- Fit to E_{extra} distribution show an excess of events ۲ consistent with null hypothesis at 3.3 σ only

PRELIMINARY

$$\mathcal{B}(B \to \tau \nu) = (1.80^{+0.57}_{-0.54} \pm 0.26) \times 10^{-4}$$

arXiv:1008.0104[hep-ex]

3.6 σ (stat. only)

Likelihood profile

468 M B pairs

Branching ratio with hadronic tags from Belle

- Combinatorial background estimated from data
- Polynomial PDF for background, plus a peaking background form MC. Gaussian PDF for signal
- Excess of events excludes null hypothesis at 3.3 σ

$$\mathcal{B}(B \to \tau \nu) = (1.79^{+0.56+0.46}_{-0.49-0.51}) \times 10^{-4}$$

Phys. Rev. Lett. 97, 251802 (2006) 449 M B pairs

Branching ratio with semileptonic tags from Belle

Branching ratio with semileptonic tags from BaBar

Phys. Rev. D 81,051101(R) (2010) 459 M B pairs

Excludes null hypothesis at 2.3 σ

Mode	${\cal N}_{ m bg}^{ m data}$	$N_{\rm obs}$	Branching fraction ($\times 10^{-4}$)
$\tau^+ \rightarrow e^+ \nu_e \bar{\nu}_{\tau}$	81 ± 12	121	(3.6 ± 1.4)
$\tau^+ \rightarrow \mu^+ \nu_\mu \bar{\nu}_\tau$	135 ± 13	148	$(1.3^{+1.8}_{-1.6})$
$ au^+ ightarrow ho^+ ar{ u}_ au$	59 ± 9	71	$(2.1^{+2.0}_{-1.8})$
$ au^+ ightarrow \pi^+ ar{ u}_{ au}$	234 ± 19	243	$(0.6^{+1.4}_{-1.2})$
$B^+ \rightarrow \tau^+ \nu_{\tau}$	509 ± 30	583	$(1.7 \pm 0.8 \pm 0.2)$
$B^+ \rightarrow \mu^+ \nu_{\mu}$	13 ± 8	12	<0.11 (90% C.L.)
$B^+ \rightarrow e^+ \nu_e$	24 ± 11	17	<0.08 (90% C.L.)

B(B $\rightarrow \tau v$) = (1.7 ±0.8 ± 0.2)×10⁻⁴

Branching fractions summary

BABAR Hadronic tags	
$\mathcal{P}(\mathbf{D}) = 0.0000000000000000000000000000000000$	arXiv:1008.0104[hep-ex]
$\mathcal{B}(B \to \tau \nu) = (1.80^{+0.04}_{-0.54} \pm 0.26) \times 10^{-4}$	
BABAR Semi-leptonic tags	
$\mathcal{B}(B \to \tau \nu) = (1.7 \pm 0.8 \pm 0.2) \times 10^{-4}$	Phys. Rev. D 81, 051101(R) (2010)
BABAR combined	
$\mathcal{B}(B \to \tau \nu) = (1.76 \pm 0.49) \times 10^{-4}$	
$\mathcal{L}(\mathcal{D} \to \mathcal{D}) = (1.10 \pm 0.10) \times 10^{-10}$	
BELLE Hadronic tags	
$\mathcal{B}(B \to \tau \nu) = (1.79^{+0.56}_{-0.40} (\text{stat.})^{+0.46}_{-0.51}) \times 10^{-4}$	Phys. Rev. Lett. 97, 251802 (2006)
RELLE Semi-lentonic tags	
$\mathcal{B}(B \to \tau \nu) = (1.54^{+0.38}_{-0.37}(\text{stat.})^{+0.29}_{-0.31}) \times 10^{-4}$	Phys. Rev. D 82, 071101(R) (2010)

HFAG average: $\mathcal{B}(B \to \tau \nu) = (1.64 \pm 0.34) \times 10^{-4}$

HFAG does not use the 2006 Belle hadronic tag result

Guglielmo De Nardo - B decays with (many) neutrinos - IFAE 2012 - Apr 11th 2012, Ferrara, Italy

Tensions in the Global Fit

- Despite the striking overall consistency of the UT constraints some measurements show "tensions"
- Statistical fluctuations, unknown systematic uncertainties or hints of New Physics around the corner?

Combining $B \rightarrow \tau v$ and Δm_d

$B \rightarrow ev$, μv untagged analysis

- Monochromatic e or μ in B rest frame
- NO tag reconstruction but exploit kinematics and and topology of the rest of the event
- No significant signal seen

Phys. Rev. D 79,091101 (2009) Phys. Lett. B 647 (2007) 67

B (r.o.e.) mass

90% C.L. limits: BF(B \rightarrow ev) < 1.9 × 10⁻⁶ BABAR BF(B \rightarrow ev) < 0.98 × 10⁻⁶ BELLE BF(B \rightarrow μ v) < 1.0 × 10⁻⁶ BABAR BF(B \rightarrow μ v) < 1.7 × 10⁻⁶ BELLE

$B \rightarrow Iv\gamma$ with hadronic tags from BaBar

 Small excess for muon channel consistent with a 2.1 σ background fluctuation

Phys. Rev. D 80, 111105 (2009) Missing mass

Physics Motivation

- FCNC b → s transition in the SM by W box or Z penguin
- Small SM branching fraction

BF($B^+ \rightarrow K^+ \nu \nu$) ~ 4 × 10⁻⁶

b

 \overline{q}

Y.Z.

 \overline{q}

- 2v final state make it theoretically cleaner than other b → s modes
- Many new physics models may enhance the BF.

and and

t, c

W

$\mathbf{B} \rightarrow \mathbf{h} v v$ experimental measurements

Mode	BaBar Had tag	BaBar SL tag	Belle Had tag	Belle SL tag
Κ+νν	✓	✓	✓	
$K_{S} \nu \nu$		1	1	
K*+ν ν	1	1	1	
$K^{*0} \nu \nu$	1	1	1	
$\pi^+ \nu \nu$			1	
$\pi^0 \nu \nu$			1	
$\rho^+\nu\nu$			1	
$ ho^0 \nu \nu$			1	
φνν			1	

- Babar uses both tags Belle hadronic tags only
- Belle searched also for other non-kaonic modes

$B^+ \rightarrow K^+ \vee \nu$ and $B^0 \rightarrow K_s \vee \nu$ with SL tags from BaBar

- Multivariate analysis using bagged decision trees
- Trained on MC simulated signal and background events
- 26 (K⁺) and 38(K_S) variables exploiting missing energy, event shape, kinematics and quality of the tag reconstruction

Phys. Rev. D 82, 112002 (2010) 459 M B pairs

 $B^+ \rightarrow K^+ \nu \nu$ Number of Events Signal MC Signal MC Number of Events 10⁴ 10³ Fraction of Even Background MC Background MC Data Data ction 10⁻² 10⁻² 10 ACCORDED TO ACCORD 10² 10⁻³ 10 10⁻³ 1⊧ 10 E 10-4 10-4 0.2 0.4 0.6 0.8 0.6 0.8 0.2 0 0.4 K_s⁰ Single BDT Output K⁺ Single BDT Output

Guglielmo De Nardo - B decays with (many) neutrinos - IFAE 2012 - Apr 11th 2012, Ferrara, Italy

$B^+ \rightarrow K^+ \vee \vee$ and $B^0 \rightarrow K_s \vee \vee$ with SL tags from BaBar

• Signal not significant, upper limits set to B($B^+ \rightarrow K^+ \nu \nu$) < 16 × 10⁻⁶ B($B^0 \rightarrow K^0 \nu \nu$) < 56 × 10⁻⁶

Zoom in the signal region

Guglielmo De Nardo - B decays with (many) neutrinos - IFAE 2012 - Apr 11th 2012, Ferrara, Italy

$B \rightarrow h^{(*)} \vee v$ with hadronic tags from Belle

Phys. Rev. Lett. 99, 221802 (2007) 535 M B pairs

- Reconstruction of many final states in the rest of the event
 - K⁺, π^+ , K^{*+}(K π), K^{*0}(K π), K_S ($\pi^+\pi^-$), ρ^+ , ρ^0 , ϕ (KK)
- Selection requirements on kinematics and veto of extra charged particles or π^0 .
- Extra energy in the calorimeter defines the signal region
 - Signal region is residual calorimeter energy E_{extra} < 300 MeV
 - Sideband region 450 MeV < E_{extra} < 1.5 GeV
- Cut and count analysis
 - Background yield measured on the sideband and scaled using MC

Belle $\mathbf{B} \rightarrow \mathbf{h^{(*)}}_{VV}$

$B \rightarrow K^{(*)} \vee v$ with hadronic and semileptonic tags BaBar

Phys. Rev. D 78, 072007 (2008) 454 M B pairs

- Final state K^{*+} (K⁺ π^0 , K_s π^+) and K^{*0}(K π)
- Signal selection based on event shape, tag reconstruction quality, missing momentum
- Hadronic tag analysis combines the variables in a Neural net
- Signal yield extracted by a maximum likelihood fit to
 - Residual energy in the calorimeter (SL tag analysis)
 - NN distribution (hadronic tags)

Model independent NP Constraints

 Model independent NP constraints by measurements of branching fraction and K* polarization
 Altmannshofer, Buras et al. JHEP 04, 022 (2009)

$$\epsilon = \frac{\sqrt{|C_L^{\nu}|^2 + |C_R^{\nu}|^2}}{|(C_L^{\nu})^{\text{SM}}|} ,$$

$$\eta = \frac{-{\rm Re}\left(C_L^\nu C_R^{\nu *}\right)}{|C_L^\nu|^2 + |C_R^\nu|^2}$$

Conclusions – Leptonic decays

- Leptonic B decays allow NP searches reasonably clean from theoretical complications
- $B \rightarrow \tau v$ BF is O(10⁻⁴): not rare but experimentally challenging. As today, we still lack a single publication with a 5 σ observation.
- To overcome the weak decay signature fruitful tagging methods have been exploited
- 4 statistically independent measurements provide a combined result with 20% accuracy. Consistent but not perfectly fitting within SM
 - Statistical fluctuation, overlooked systematics or new physics?
- $B \rightarrow \mu v$ still below the sensitivity of current B-factories
- Future B-factories will measure both the B $\rightarrow \tau v$ and B $\rightarrow \mu v$ branching fractions precisely (much better than 5%)

Conclusions - B \rightarrow K^(*)vv

- FCNC b → s transitions are rare in the SM and new physics may enter enhancing the branching fraction
- Among them the $B \rightarrow K^{(*)}vv$ are the cleanest theoretically
- Experimentally they are as challenging as $B \rightarrow \tau v$
- At current B-factories we didn't see any significant signal. The B⁺ \rightarrow K⁺vv search being the most sensitive at 4x SM prediction
- At future B factories we expect to observe a SM signal with the full dataset
- Moreover with the hadronic tagging will be possible to perform angular analysis of B $\rightarrow K^*vv$ decays
- Combining several observables NP contributions may be constrained (a la UT fits)

SuperB and Belle-II extrapolations

- Benefits of lower boost and dectector improvements:
 - educated guesses by Belle-II point to 30-35% precision
 - Extrapolating performances of $B \rightarrow \tau v$ and assuming 70% improvements in reconstruction due to detector improvements
 - fast simulation studies by SuperB point to 15-20% precision

Belle II extrapolations

- From Belle-II collaboration Physics Report (arXiv:1002.5012)
- Scale both the statistical and systematical uncertainty by luminosity
- Resulting in a 4% total uncertainty with the full dataset of 50 ab⁻¹

SuperB extrapolations

- The measurements will rapidly become systematically limited
- Expect a final precision of 4% (systematic dominated) well before 75ab⁻¹
- Caveat: 4% is half of the current systematic uncertainty
 - We assess most of systematics from data so it may be conservative From Alejandro Perez @ HQL 2010

Prospects of B \rightarrow µv in SuperB and Belle-II

- Scaling the statistical uncertainty of the untagged method with luminosity
- Assuming a moderate improvement in systematic uncertainty
- Both collaborations assume that an hadronic tagging will perform better

Both SuperB and Belle-II extrapolate a 5σ observation within SM before $10ab^{-1}$ Scaling to 75 ab^{-1} expect SuperB to measure BF($B \rightarrow \mu \nu$) at 4% Scaling to 50 ab^{-1} expect Belle-II to measure BF($B \rightarrow \mu \nu$) at 6%

Muon mode extrapolation on 2HDM

From Alejandro Perez @ HQL 2010

SuperB $\mathbf{B} \rightarrow \tau \mathbf{v} + \mathbf{B} \rightarrow \mu \mathbf{v}$

- 75 ab-1 SuperB expected exclusion region on 2HDM parameters from "the impact of SuperB on flavour Physics" arXiv:0901.0512
- ATLAS constraint from arXiv:0901.0512

- From S.Robertson @ Miami workshop
 - Potential enhancement or suppression of branching fraction by H⁺

• Precision measurements of both $B^+ \rightarrow \tau^+ \nu$ and $B^+ \rightarrow \mu^+ \nu$ feasible at SuperB (presumably $B \rightarrow D^{(*)} \tau \nu$ also, but not yet studied)

BABAR B⁺ -> K⁺ τ⁺ τ⁻

- Hadronic tag
- 1 prong τ decays, exactly three tracks, particle ID
- Requirements on q², track momentum, event shape, missing momentum, residual energy in calorimeter
- Expected background events: 65 ± 7
- Observed events: 47
- Signal efficiency 4.4 x 10⁻⁴
- No excess of events seen
- 90% CL upper limit set to BF < 3.3 10⁻³

460 M B pairs

- No evidence of signal in any mode
- Assessed 90% U.L. with Feldman-Cousins prescriptions

Mode	Noba	Nside	N_{b}	$\epsilon(\times 10^{-5})$	U.L.
$K^{*0}\nu\bar{\nu}$	7	16	42 ± 14	5.1 ± 0.3	$<3.4 \times 10^{-4}$
$K^{*+}\nu\bar{\nu}$	4	18	5.6 ± 1.8	5.8 ± 0.7	$<1.4 \times 10^{-4}$
$\rightarrow K_{S}^{0}\pi^{+}$	1	7	2.3 ± 1.2	2.8 ± 0.3	
$\rightarrow K^+ \pi^0$	3	11	3.3 ± 1.4	3.0 ± 0.4	
$K^+ \nu \bar{\nu}$	10	60	20.0 ± 4.0	26.7 ± 2.9	$< 1.4 \times 10^{-5}$
$K^0 \nu \bar{\nu}$	2	8	2.0 ± 0.9	5.0 ± 0.3	$< 1.6 \times 10^{-4}$
$\pi^+ \nu \bar{ u}$	33	149	25.9 ± 3.9	24.2 ± 2.6	$< 1.7 \times 10^{-4}$
$\pi^0 \nu \bar{\nu}$	11	15	3.8 ± 1.3	12.8 ± 0.8	$<2.2 \times 10^{-4}$
$\rho^0 \nu \bar{\nu}$	21	46	11.5 ± 2.3	8.4 ± 0.5	$< 4.4 \times 10^{-4}$
$\rho^+ \nu \bar{\nu}$	15	66	17.8 ± 3.2	8.5 ± 1.1	$< 1.5 \times 10^{-4}$
$\phi \nu \bar{\nu}$	1	- 9	-1.9 ± 0.9	9.6 ± 1.4	$<5.8 imes10^{-5}$