SPARC_LAB

Sources for Plasma Accelerators and Radiation Compton with Lasers And Beams Massimo Ferrario INFN-LNF on behalf of the SPARC_LAB collaboration

Incontri di Fisica delle Alte Energie– Ferrara – 11 Aprile 2012

SPARC LAB related INFN units

FLAME Target Area

Self Injection: spectrum of the accelerated electrons

Recent spectra acquired at 1 J laser energy on gas-jet target and 35 fs: expected intensity at focus: 7E18 W/cm2

T. Levato et al., EPS Conference in Plasma Physics, 2011

LILIA Laser Induced Light Ions Acceleration

Courtesy C. De Martinis

SPARC bunker

New installations

Thomson Interaction region (20-550 keV)

 $(hv)_{\chi}$ =4 $(hv)_{laser}$ (T/ 0.511)²

 $(hv)_{laser} = 1.2 \text{ eV}$ T = 30.28 MeV (hv)_x = 20 keV mammografia M. Gmbaccini - Frascati 15/03/2011

EXIN (EXternal INjection)

n _e [cm ⁻³]	E _{max} [GV/m]	λ _ρ [μm]	Ldeph [m]	Energy gain over L = 2cm [MeV]	Energy gain over L = 10cm [MeV]
1e16	0.2	330	400	<4	<20
5e16	1	150	5	<20	<100
2.5e17	3.8	66	0.45	<76	<380
7.5e17	7.5	39	0.1	<150	<750
2.5e18	8.5	30	0.04	<190	-

Courtesy L. Serafini

Hollow Dielectric Waveguide Capillaries

With LPGP Orsay, Brigitte Cros et al.

Measurement of a plasma wave in the wake of an intense laser beam guided in a capillary tube over 8 cm, using optical diagnostics. Measured field up to 7GV/m over 8 cm.

Courtesy B. Cros

Resonant plasma Oscillations by Multiple electron Bunches

• Weak blowout regime with resonant amplification of plasma wave by a train of high Brightness electron bunches produced by Laser Comb technique ==> 5 GV/m with a train of 3 bunches, 100 pC/bunch, 50 μ m long, 20 μ m spot size, in a plasma of density 10²² e⁻/m³ at λ_p =300 μ m ?

- Ramped bunch train configuration to enhance tranformer ratio?
- High quality bunch preservation during acceleration and transport?
- Strong blowout regime with pC/fs bunches ==> TV/m regime ?

Laser COMB technique

-2

0.8

0.6

0.4

-0.2 M

-0.4

Interferogram

Measured

0

Time (ps)

2

Expected

2

4

Courtesy E. Chiadroni

Coherent TR

0.5

0' 0

0.5

Frequency (Hz)

Double FEL pulse

Courtesy L. Giannessi, V. Petrillo

 $\Delta \hat{\lambda}$

A FEL driven by Plasma Accelerator at LNF?

SPARC_LAB User Facility?

SPARC_LAB User Facility?

2 x 1.4 m C-band to be installed

1 S-band to be removed

- 1.0 New short period undulator (ENEA – Kyma)

Expected energy upgrade up to 240 MeV

Courtesy R. Boni, M. Bellaveglia, A. Gallo

5712 MHz - 50 MW TEST STAND

γ (MeV)	Ny/sec	$\mathbf{w}_0 (\mu \mathbf{m})$	σ Ε (%)	σ_E (keV)	t (t _{RF} x n _{RF})	Nγ/sec.eV
11.1	2.1 [.] 10 ⁹	15	0.25	27.7	100x100	7.6 ⁻ 10 ⁴

SPARC_LAB contribution to:

SASE FEL scaling laws

Preliminary GENESIS simulations

Energy	GeV	7
Energy spread	slice(%)	0.003
Vertical emittance	mm mrad	0.5
Horizontal emittance	$\operatorname{mm}\operatorname{mrad}$	0.5
Peak Current	kA	3

	SPARClike	LCLSlike	Short period
$\lambda_r(\overset{\mathrm{o}}{A})$	2.34	3.92	1.12
$L_s(m)$	90	70	90
$E_S(\mu J)$	40	40	20
bw(%)	0.05	0.05	0.025
$L_g(m)$	~ 4.8	~ 3	~ 5

0 0.2345 λ[nm]

0.2350

0.2340

0.2335

CONCLUSIONS

SPARC_LAB is a facility based on the unique combination of high brightness electron beams with high intensity ultra-short laser pulses will be soon available for the entire scientific community, such to allow the investigation of all the different configurations of plasma accelerator and the development of a wide spectrum interdisciplinary leading-edge research activity with advanced radiation sources