

Tecniche di selezione dei materiali ad alta purezza per esperimenti di fisica degli eventi rari

Elena Sala

Università degli Studi di Milano Bicocca-Dipartimento di Fisica G.Occhialini INFN Sezione di Milano Bicocca

IFAE 2012- Ferrara

FISICA DEGLI EVENTI RARI

Gli eventi rari sono fenomeni caratterizzati da:

Bassi rate di conteggio

Diminuzione conteggi spuri

Applicazioni

ββ(0v) (massa neutrino)
v solari (oscillazioni)
Dark Matter (osservazione)
Radioattività ambientale (piccole contaminazioni)
Datazione con metodi radiometrici (variazione contaminazioni)

DOPPIO DECADIMENTO BETA

i.a:abbondanza isotopica; M:massa della sorgente; T:live time; ΔE:FWHM; b:background

Fondo Radioattivo nella regione di interesse per esperimenti sul decadimento doppio beta <10⁻² conteggi/(keV kg anno)

CUORE

Cryogenic Underground Observatory for Rare Events array of 988 TeO2 crystals 5X5X5 cm³ (750 g) \Rightarrow 741 kg TeO2 19 torri \Rightarrow 600 kg Te

19 torri 13 piani 4 cristalli su ogni piano

Isotopo attivo 130Te Abbondanza isotopica: a.i. = 33.9% Energia di transizione:

 $Q\beta\beta = 2527 \text{ keV}$

TeO2 Crystals Copper Frames

Cristalli: SORGENTE e RIVELATORE *Rame*: struttura, materiale affacciato ai cristalli

Limiti contaminazione						
Cristalli:						
<u>238</u> U	<u>< 3*10-13</u>	<u>³_g/g</u>				
<u>232</u> Th	<u>< 3*10-10</u>	<u>³ g/g</u>				
²¹⁰ Pb	<u>< 10⁻⁵</u>	- <u>Bq/kg</u>				
<u>60</u> C0	<u>< 10⁻⁶</u>	- <u>Bq/kg</u>				

CUORE-0

Prima torre di <u>CUORE</u> 52 cristalli TeO2 – 750g - 5·10²⁵ 130Te nuclei

> TEST procedura di montaggio TEST miglioramento del fondo radioattivo

Pulizia superficiale ottimizzata:

- Lappatura Cristalli
- Trattamento definitivo Rame (Plasma)

Ottimizzazione montaggio: Massimizzare superficie esposta tra cristalli Minimizzare quantità di Rame nella struttura

RAME

Minima esposizione raggi cosmici Evitare attivazione <60Co

TECNICHE LOW LEVEL COUNTING

Ottimizzazione del fondo radioattivo:

Selezione dei materiali (struttura e trattamenti) attraverso misure di contaminazione superficiale e di bulk

<u>RNAA</u>

Produzione isotopo instabile : assorbimento neutroni da parte dei nuclei nel materiale da analizzare

$$n + {}^{A}_{Z} X \to {}^{A+1}_{Z} X \overrightarrow{\beta}^{-}_{Z+1} Y \to {}^{A+1}_{Z+1} Y + \gamma$$

Reazione (n, γ) per neutroni termici

Decadimento **B** e **fotoni** emessi ritardati

No manipolazione chimica prima dell'irraggiamento

 Acidi utilizzati dopo irraggiamento privi degli elementi attivati

 Separazione interferenti da elementi da analizzare attraverso resine a scambio ionico

RNAA: RAME

TRIGA MARK II University of Pavia 250 kW

MISURA concentrazione 232Th nel RAME di CUORE

Campione irraggiato:

199g Cu (dischi: 5mm diametro, 1mm spessore)

100 ul <u>Standard</u> Solution (1000 µg/ml 232Th)

$$^{232}Th\left(n,\gamma\right)^{233}Th\xrightarrow{\beta^{-}}{^{233}}Pa\xrightarrow{\beta^{-}}{^{233}}U$$

233Pa t1/2 =27 d γ da 312.17keV Tempo di irraggiamento 30 ore di esposizione totali Flusso: 1013 n cm-2 sec-1

Trattamento chimico del campione che riconcentra l'elemento di intersse eliminando gli interferenti Misura con HPGe

DL: 4.9 x 10-13 g/g 90% c.l.

SPETTROSCOPIA GAMMA ULB

Misura Campioni con HPGe: Riduzione del fondo ambientale Schermatura (Piombo con bassa concetrazione di 210Pb e Rame OFHC) Copertura raggi cosmici Riduzione fondo intrinseco Selezione dei materiali

 $A_{spec}(Bq/kg) = \frac{(conteggi full-energy)_{campione} - (conteggi full-energy)_{fondo}}{m(Kg) \cdot B.R. \cdot T_{misura} \cdot \epsilon}$

Laboratori Nazionali del Gran Sasso Migliore sensibilità Ottimizzazione HPGe come fondo e copertura

SVILUPPO DI TECNICHE SPECIFICHE

LABORATORIO DI RADIOATTIVITÀ MILANO BICOCCA

Spettroscopia gamma Rivelatori HPGe

Piano -2 Dipartimento di Scienze Ambientali Milano Bicocca SELEZIONE DEI MATERIALI

<u>GMX100-95-PLUS-LB-S</u>

Strumento a basso fondo radioattivo intrinseco 2 rivelatori al Germanio in configurazione Ultra Low Background Metodo attivo di reiezione del fondo: COINCIDENZA

GMX: MISURA DEI MATERIALI E SIMULAZIONE

Rivelatori al Germanio di tipo *n* in configurazione Reduce Background

End Cap in Fibra di Carbonio Holder in Rame Molecular Sieve per creare il vuoto Scheda elettronica e Filtro Hv interni all'End Cap

Raffreddamento con X-COOLER

Carbon Fiber
Mylar
Polietilene
Ottone (Oro)
Teflon
Tefzel
Allumina
Molecular Sieve
Scheda Elettronica
Acciaio INOX
Vetro Epossidico
Alluminio
Rame

GMX: SELEZIONE DEI MATERIALI

(conteggi full-energy)_{campione}- (conteggi full-energy)_{fondo}

m(Kg) · B.R. · T_{misura}· ε

<u>GMX100-95-PLUS-LB-S</u>

Materiali selezionati

A_{spec}(Bq/kg)

Conteggi full-energy: conteggi che costituiscono il picco all'energia considerata

ε: efficienza assoluta del rivelatore

B.R.:branching Ratio per la radiazione considerata

Modifica del criostato: Scheda Elettronica e Filtro Hv esterni a End Cap Creazione del vuoto con metodo meccanico

Campione	²³² Th (mBq/kg)	²³⁸ U (mBq/kg)	⁴⁰ K (mBq/kg)	Utilizzo	
High Purity Aluminium	5 ± 0.9	< 2.4	< 37	End Cap Holder	
Mylar	< 26	< 0.155	0.17 ±0.04	Sostituisce Vetro epossidico	
Allumina monocristallina	< 3.8	< 0.56	42 ± 14	Base cristallo	S
					-

<u>GMX</u>

Rivelatori inseriti in schermatura: 20 cm Piombo 15 cm Rame (interno) Piombo Romano tra rivelatore ed elettronica

I segnali vengono acquisisti da entrambi i rivelatori contemporaneamente Trigger fatto con **OR**: ogni volta che un segnale viene registrato da uno dei due rivelatori.

Analisi offline con software specifico.

Scheda di acquisizione

<u>GMX</u>

Primo test di analisi in coincidenza: misura con sorgente di ²²Na: 2 fotoni da 511keV back to back

Ricostruzione del sistema al simulatore. Confronto tra <u>Spettro in coincidenza</u> <u>Misurato</u> e <u>Spettro in coincidenza</u> <u>Simulato</u> corrispondente alla selezione di un evento da 511keV sull'altro rivelatore.

Forma dello spettro ricostruita! Analisi in coincidenza correlata solo alla sorgente!!! Test di ipotesi: FONDO TRASCURABILE!

Efficienza al 511keV singolo rivelatore misura integrale: **15%** Efficienza in coincidenza: 78% di Eff integrale.

Ottima ricostruzione dello spettro del radionuclide.

GMX: analisi in coincidenza

CONCLUSIONI

Tecniche per la selezione dei materiali assodate e ulteriormente sviluppabili

RNAA: Implementazione della tecnica con nuovi approcci Miglior limite sul 232Th su campioni di Rame

GMX: Implementazione del sistema di coincidenza (DAQ e software) Sistema di veto per raggi cosmici