

ATLAS search for the

decay H→WW

M. Biglietti (INFN Roma Tre)

Incontri di Fisica delle Alte Energie, Ferrara, 12 Aprile 2012

Higgs Boson Decays

$\Rightarrow H \rightarrow W W \rightarrow |_{V}|_{V}$

- → m_H = 100-500 GeV
- 9 sub-channels :
- \Rightarrow m_T shape for the limit setting
- ⇔ H→WW→Ivjj
 - → m_H=300-600 GeV
 - → 6 sub-channels :
 - \Rightarrow m_{Ivjj} for the limit setting
 - Ref : ATLAS-CONF-2012-018

JJJJ

Higgs Boson Production @ LHC

Ingredients

- → High p_T isolated leptons (electrons or muons)
 - \Rightarrow electron from EM cluster + tracks, $|\eta| < 2.47$
 - \Rightarrow muons from inner detector + muon spectrometer, $|\eta| < 2.4$
- ⇒ jets from anti-kt topological clusters, b-tag for veto
- ← E_T^{miss} from calibrated jets, leptons, photons and soft calorimeters term

$H \rightarrow WW \rightarrow |v|v : Pre-Selection$

- \Rightarrow Two isolated opposite-sign leptons (p_T > 25,15 GeV)
- Z veto in the same flavor channel
- \thickapprox Large missing transverse energy ($E^{miss}{}_{T}$ >45 (25) GeV for ee, $\mu\mu(e\mu)$)
- Further selection and
- background estimation
- based on jet (pT>25-30 GeV,
- $|\eta| < 4.5$) multiplicity

$H \rightarrow WW \rightarrow |v|v :$ Selection

- → H+0jet:
 - \Rightarrow p_T^{II}>45 (30) GeV for µµ,ee (eµ) → DY rejection
- → H+1jet:
 - \Rightarrow b-tag veto \rightarrow top rejection
 - \Rightarrow p_T(tot) < 30 GeV \rightarrow soft jets rejection
 - \Rightarrow Z $\rightarrow \tau \tau$ veto
- H+2jet (contributions from VBF) as H+1jet plus:
 - ⇒ jets in opposite hemispheres
 - → m_{ii} > 500 GeV

H→WW→lvlv : Common Topological Cuts

- - \thickapprox Require small $\Delta \varphi_{\|}$ (<1.8 for $m_{H}{<}200$ GeV) and small $m_{\|}$ (<50 GeV for $m_{H}{<}300GeV)$

H→WW→lvlv : Background Estimation

Use data-driven estimates for main backgrounds

> SM WW

- > control sample (no $\delta \phi_{\parallel}$ cut, high m_{ll} region)
- For m_H >300 GeV only from
 MC

top

- control regions:
 - H+0j : from the dilepton sample with large E_T^{miss} + probability to pass the jet veto
 - > H+1j : reversing the b-jet veto and removing $\Delta \phi_{\parallel}$ and m_{\parallel} cuts

> DY/Z+jets

➤ ABCD method in the E_T^{miss}—m_{II} plane

> W+jets

 control sample with one inverted lepton ID passing loose criteria + estimation of fake factors

$H \rightarrow WW \rightarrow |v|v$: Yields and M_T Distributions

Lepton Channels	0-jet ee	0-jet	0-jet <i>eµ</i>	1-jet ee	1-jet µµ	1-jet <i>eµ</i>
Total bkg.	58 ± 5	114 ± 10	257 ± 13	21 ± 3	37 ± 5	76±6
Signal	3.8 ± 0.1	9.0 ± 0.1	25 ± 0.2	1.1 ± 0.1	2.3 ± 0.1	6.0 ± 0.1
Observed	52	138	237	19	36	90

H+2j: Obs = 1 Tot Bkg = 1.8 Signal = 0.8

No mass reconstruction possible due to $2v \rightarrow fit M_T$ shape

Exclusion Limit from $WW \rightarrow |v|v$

⇒ Higgs mass in the range from 130 GeV to 260 GeV is excluded at 95% CL ⇒ expected exclusion range is 127 GeV ≤ m_H ≤ 234 GeV.

HWW→lvjj

- Sensitive for m_H > 300GeV since the jets from W+jets are less energetic then those from Higgs
 - dominant background (W+jets) falls off rapidly with increasing M_{lvjj}
- → Possibility of fully reconstruct the Higgs boson mass
 $(M_{|\nu_{jj}})$
 - \Rightarrow Imposing $M_{\mu\nu} = M_W$ and $M_{\mu\nu} = M_W$
- Analysis splitted into 0,1 and 2 (VBF) jets
 in addition to the 2 jets from Higgs

HWW→lvjj: Selection

- → H+0j, H+1j:
 - → 1 isolated lepton (electron or muon) with pT> 40 GeV
 - \Rightarrow exactly 2 or 3 jets with $p_T > 40$ GeV and $|\eta| < 4.5$
 - ⇒ jets from W decay
 - → p_T(j1)>60 GeV
 - $\boldsymbol{\nsim}$ required to be in $|\eta|$ <2.8, ΔR_{jj} <1.3 and not b-tagged
 - \Rightarrow E_T^{miss} >40 GeV
- → VBF:
 - → 1 isolated lepton (electron or muon) with pT> 30 GeV
 - \Rightarrow at least 4 jets with p_T>25 GeV and $|\eta| < 4.5$, two jets with $M_{ii} = M_W$
 - \Rightarrow E_T^{miss} >30 GeV
 - \Rightarrow Forward jet tagging for VBF , m_{jj}>600GeV
 - → no b-tagged jets

H→WW→lvjj : Mass Distribution and Bkg Modeling

- Background modeled directly from the fit to the m_{lvii} mass spectrum
 - functional form by MC studies and tested with events in m_{jj} sidebands
- Major systematic uncertainties from
 - ⇒ jet energy scale and resolution (10%-20%)
 - ⇒ E_T^{miss} resolution due to pile-up (10%-15%).

13

$H \rightarrow WW \rightarrow |vjj$: Exclusion limits

- \Rightarrow Limits are set fitting the shape of the m_{Ivii} distribution
- \Rightarrow Best sensitivity for m_H=400GeV

Conclusions

- \Rightarrow No evidence for the Higgs boson with 4.7 fb⁻¹
- Higgs mass in the range from 130 GeV to 260 GeV is excluded at 95% CL
 - \Rightarrow expected exclusion range is 127 GeV ≤ m_H ≤ 234 GeV.
- Allowed Scalar Boson mass has been squeezed from ATLAS into a tiny region (see A. Messina talk): 117.5-118.5 GeV, 122.5-129 GeV
 - SM Higgs excluded from 129 < mH < 539 GeV at 95% CL</p>
- \Rightarrow H \rightarrow WW is expected to play an important role in 2012 analysis!
 - Many improvements possible
 - Better pileup suppression, associated production, multivariate techniques. lowp_T leptons
 - → More data!

Backup

E_T^{miss} Distribution in di-lepton Events

H→WW→InIn / Background Estimation

HWW→lvlv: Background compatibility

Probability that the excess is caused by a background fluctuation