Risultati recenti sullo studio di stati di charmonio a *BABAR*

Elisa Fioravanti

INFN Ferrara In rappresentanza della Collaborazione BABAR

Incontri di Fisica delle Alte Energie Ferrara 11-13 Aprile 2012

Indice

Introduzione

- Ricerca degli stati $Z_1(4050)^+$ e $Z_2(4250)^+$ nei decadimenti $\bar{B}^0 \to \chi_{c1} K^- \pi^+$ e $B^+ \to \chi_{c1} K_s^0 \pi^+$ PRD 85, 052003 (2012)
- Studio dello stato finale $J/\psi\omega$ in fusione $\gamma\gamma$ Preliminary
- Ricerca di risonanze nello stato finale $\eta_c\pi^+\pi^-$ utilizzando interazioni $\gamma\gamma$ Preliminary
- Studio del processo $e^+e^- \rightarrow J/\psi \pi^+\pi^-$ via ISR arXiv:1204.2158v1 Sottomesso a PRD
- Sommario e conclusioni

Meccanismi di produzione del charmonio nelle B-factories

Spettro del charmonio

- Sotto la soglia DD

 tutti gli
 stati attesi sono stati osservati
 con risultati in accordo con le
 previsioni teoriche. Non sono
 previsti ulteriori stati.
- Molti stati inattesi sono stati scoperti sopra la soglia DD
 , molti di essi sembrano avere J^{PC} = 1⁻⁻
- Questi risultati sono stati ottenuti principalmente dagli esperimenti Belle e *BABAR*, con contributi significativi provenienti anche da CDF, D0 e CLEO.

Eur. Phys. J.C71, 1534 (2011)

Ricerca degli stati $Z_1(4050)^+$ e $Z_2(4250)^+$

Ricerca degli stati $Z_1(4050)^+$ e $Z_2(4250)^+$ nei decadimenti $\bar{B}^0 \rightarrow \chi_{c1} K^- \pi^+$ e $B^+ \rightarrow \chi_{c1} K_s^0 \pi^+$ (429 fb⁻¹) PRD 85, 052003 (2012)

Ricerca degli stati $Z_1(4050)^+$ e $Z_2(4250)^+$ - Motivazioni e strategia

Motivazioni

- Belle ha osservato gli stati Z₁(4050)⁺ e Z₂(4250)⁺ nella distribuzione di massa invariante di χ_{c1}π⁺ nel decadimento B
 ⁰ → χ_{c1}K⁻π⁺ (PRD 78, 072004 (2008))
- Belle ha osservato $Z(4430)^- \rightarrow \psi(2S)\pi^-$ nel decadimento $B^{-,0} \rightarrow \psi(2S)\pi^-K^{0,+}$ (PRL 100, 142001 (2008), PRD 80, 031104(R) (2009)) non confermato da *BABA*R (PRD 79, 112001 (2009)); nessuna risonanza è stata osservata nello spettro di $J/\psi\pi^-$ nel decadimento $B^{-,0} \rightarrow J/\psi\pi^-K^{0,+}$
- Questi studi hanno generato molte discussioni teoriche e sperimentali dovute anche al fatto che queste risonanze cariche charmonium-like devono essere composte almeno da quattro quark.

Strategia di analisi di BABAR

- Lo studio è finalizzato alla ricerca degli stati $Z_1(4050)^+$ e $Z_2(4250)^+$ nella distribuzione di massa invariante di $\chi_{c1}\pi^+$ nel decadimento $\bar{B}^0 \to \chi_{c1}K^-\pi^+$ e $B^+ \to \chi_{c1}K^0_s\pi^+$ con $\chi_{c1} \to J/\psi\gamma$
- La distribuzione di massa invariante $K\pi$ e la sua dipendenza angolare data dai polinomi di Legendre in termini di ampiezze d'onda S, P e D sono stati proiettati nella distribuzione di massa $\chi_{c1}\pi^+$ cercando di confermare le strutture risonanti osservate da Belle.

Ricerca degli stati $Z_1(4050)^+$ e $Z_2(4250)^+$ - Strategia di analisi I

Alla distribuzione di massa invariante $K\pi$ nei dati è stato sottratto il contributo derivante dal fondo ed essa è stata poi corretta per l'efficienza

- Fit effettuato con una funzione data dalla somma di contributi di onde S, P e D.

- I risultati ottenuti per \bar{B}^0 e B^+ sono in buon accordo tra di loro.

- Fit migliorato includendo un contributo $K_1^*(1680)$ (seconda riga nella colonna P-wave) non presente nell'analisi con $J/\psi \in \psi(2S)$

- I momenti $< Y^0_L >$ per L ≥ 6 sono in accordo con zero; la presenza di risonanze nella distribuzione di massa $\chi_{c1}\pi^+$ è attesa per contributi con $< Y^0_L >$ maggiori

E' stata utilizzata una interpolazione lineare dei momenti $\langle Y_L^0 \rangle$ per L \leq 5 per descrivere la struttura angolare di $K\pi$ e insieme al fit alla distribuzione di massa $K\pi$ è stata creata la proiezione nella distribuzione di massa $\chi_{c1}\pi^+$

- La curva tratteggiata indica la proiezione per una distribuzione angolare di Kπ piatta.
- La curva rossa è stata ottenuta utilizzando l'interpolazione dei momenti fino a < Y₅⁰ >; l'eccellente descrizione dei dati indica che non è necessaria l'inclusione di risonanze ulteriori nella distribuzione di massa.
- Aggiunti due contributi descritti da Breit-Wigner per le risonanze $Z_1 e Z_2$ (e una sola BW per la risonanza Z) alla proiezione non normalizzata $K\pi$, in un fit ai dati; i parametri delle risonanze Z sono stati fissati a quelli ottenuti da Belle.

Ricerca degli stati $Z_1(4050)^+$ e $Z_2(4250)^+$ - Risultati

Window: $1.0 < m^2(K\pi) < 1.75 \text{ GeV}^2/c^4$

Data	Resonance	N_{σ}	Fraction (%)	χ^2/NDF
a) Total	$Z_1(4050)^+$	1.1	1.6 ± 1.4	57/57
	$Z_2(4250)^+$	2.0	4.8 ± 2.4	
b) Total	$Z(4150)^{+}$	1.1	4.0 ± 3.8	61/58
c) Window	$Z_1(4050)^+$	1.2	3.5 ± 3.0	53/46
	$Z_2(4250)^+$	1.3	6.7 ± 5.1	
d) Window	$Z(4150)^{+}$	1.7	13.7 ± 8.0	53/47

In ciascun fit la significatività ottenuta è bassa ($\leq 2\sigma$) Nessuna evidenza degli stati osservati da Belle

Upper limits at 90% C.L.

$B(\bar{B}^0 \to Z_1^+ K^-) \times (B(Z_1^+ \to \chi_{c1} \pi^+) < 1.8 \times 10^{-5}$
$B(\bar{B}^0 \to Z_2^+ K^-) \times (B(Z_2^+ \to \chi_{c1}\pi^+) < 4.0 \times 10^{-5}$
$B(\bar{B}^0 \to Z^+ K^-) x(B(Z^+ \to \chi_{c1} \pi^+) < 4.7 \times 10^{-5}$

Studio dello stato finale $J/\psi \ \omega$ in fusione $\gamma \gamma$

Studio dello stato finale $J/\psi \omega$ in fusione $\gamma \gamma$ (519 fb⁻¹) Preliminary

 $\gamma\gamma
ightarrow J/\psi \ \omega$ - Motivazioni

Confermare lo stato X(3915) e cercare lo stato X(3872)					
X(3915)	X(3872)				
• X(3915) è stata osservata da Belle [1] e da <i>BABA</i> R [2] in $B \rightarrow X(3915)K$, X(3915) $\rightarrow J/\psi \ \omega$	 X(3872) → J/ψ ω è stata vista nei decadimenti dei mesoni B sia da BABAR che da Belle. 				
• Belle ha osservato la X(3915) anche nel decadimento $\gamma\gamma \rightarrow X(3915) \rightarrow J/\psi \ \omega$ [3]	 I possibili numeri quantici della X(3872) sono J^{PC}=1⁺⁺ o J^{PC}=2⁻⁺ [4]. γγ → X(3872) implica J^{PC} = 2⁻⁺ γγ → X(3872) non è stata vista da Belle. 				
• Le possibili interpretazioni della X(3915) sono $\chi_{c0}(2P)$ o $\chi_{c2}(2P)$					
³⁰ [³] 253 fb ¹ ³⁰ [²] 426 fb ¹ ^B rdecay (³] 694 fb ¹ ³⁰ [³] 694 fb ¹ ³⁰ [³]					

Risultati recenti sullo studio di stati di charmonio a BABAR

$\gamma\gamma \rightarrow J/\psi \ \omega$ - Risultati

Nuovo limite: $\Gamma_{\gamma\gamma}(X(3872)) \times B(X(3872) \rightarrow J/\psi \ \omega) (J=2) < 1.7 \text{ eV}$

l valori di massa e larghezza ottenuti sono leggermente inferiori rispetto a quelli ottenuti da Belle e da *BABA*R per $\chi_{c2}(2P)$ dal decadimento $\gamma\gamma \rightarrow D\bar{D}$, and a set $\gamma\gamma \rightarrow D\bar{D}$, and $\gamma\gamma \rightarrow D\bar{D}$.

Ricerca di risonanze nello stato finale $\eta_c\pi^+\pi^-$ utilizzando interazioni $\gamma\gamma$

Ricerca di risonanze nello stato finale $\eta_c \pi^+ \pi^$ utilizzando interazioni $\gamma\gamma$ (474 fb⁻¹) Preliminary

- Studio del processo $\gamma \gamma \rightarrow X \rightarrow \eta_c(1S)\pi^+\pi^-$ dove X è una delle seguenti risonanze $\chi_{c2}(1P), \eta_c(2S), X(3872), X(3915)$ o $\chi_{c2}(2P), \text{ con } \eta_c(1S) \rightarrow K_s^0 K^{\pm}\pi^{\mp}$ e $K_s^0 \rightarrow \pi^+\pi^-$
- Misurare i rapporti di decadimento per gli stati $\chi_{c2}(1P)$, $\eta_c(2S)$, X(3872), X(3915) e $\chi_{c2}(2P)$ in $\eta_c(1S)\pi^+\pi^-$
- Previsione per $B(\eta_c(2S) \to \eta_c(1S)\pi^+\pi^-) \sim 2.2\%$ ottenuta da $\Gamma(\eta_c(2S) \to \eta_c(1S)\pi^+\pi^-)/\Gamma(\psi(2S) \to J/\psi\pi^+\pi^-) \sim 2.9$ (M.B.Voloshin Mod.Phys.Lett A 17, 1533 (2002))

イロト イ伺ト イヨト イヨト

$\gamma\gamma \rightarrow \eta_c \pi^+ \pi^-$ - Strategia di analisi

• La strategia di analisi si suddivide in due punti principali:

- 1: Con un fit alla massa invariante m($K_s^0 K^{\pm} \pi^{\mp}$) estrarre i parametri del fondo combinatoriale

- 2: Effettuare un fit bidimensionale in $m(K_s^0 K^{\pm} \pi^{\mp})$ e $m(K_s^0 K^{\pm} \pi^{\mp} \pi^+ \pi^-)$ in intervalli attorno alla risonanza di interesse.

- Tipologia di eventi nel fit bidimensionale:
 - Segnale (decadimenti in $\eta_c(1S)\pi^+\pi^-$)
 - Fondo combinatoriale

- Decadimento diretto (segnale in $m(K_s^0 K^{\pm} \pi^{\mp} \pi^+ \pi^-)$, ma $K_s^0 K^{\pm} \pi^{\mp}$ non proviene dal decadimento dell' $\eta_c(1S)$)

- η_c -peaking background (segnale di $\eta_c(1S)$ ma non di un decadimento a 5 corpi)

$\gamma\gamma \rightarrow \eta_c \pi^+ \pi^-$ - Risultati

Studio del processo $e^+e^- \rightarrow J/\psi \pi^+\pi^-$ via ISR

Studio del processo $e^+e^- \rightarrow J/\psi \pi^+\pi^$ via ISR (454 fb⁻¹) arXiv:1204.2158v1 Sottomesso a PRD

$e^+e^- ightarrow \gamma J/\psi \pi^+\pi^-$ - Motivazioni

- BABAR scopre la Y(4260) nella produzione ISR di $J/\psi\pi^+\pi^-$ [1]; implica $J^{PC} = 1^{--}$
- Conferme da CLEO-c [2], CLEO-III [3] e Belle [4].
- Belle conferma la Y(4260) in produzione ISR, e osserva un nuovo stato: Y(4008)
 [4].
- Tutti gli spazi disponibili nello spettro del charmonio per 1⁻⁻ sono già occupati. La natura dello stato Y(4260) deve ancora essere definita.

[2] CLEO-c PRL 96,162003 (2006)

[1] BABAR PRL 95,142001 (2005)

$e^+e^- ightarrow \gamma J/\psi \pi^+\pi^-$ - Intervallo della $\psi(2S)$ (3.5-4 GeV/c²)

- Uno studio dettagliato della $\psi(2S)$ è stato effettuato per capire se l'eccesso di eventi al di sotto di 4 GeV/c² può essere un possibile contributo proveniente dalla coda della $\psi(2S)$
- BES (Phys.Lett.B 605,63(2005)) e CLEO (Phys.Lett.96 082004(2006)) hanno riportato il decadimento della $\psi(3770)$ in $J/\psi\pi^+\pi^-$.

Nella distribuzione di massa invariante $J/\psi \pi^+\pi^-$, la regione al di sotto di 4 GeV/c² (intervallo della $\psi(2S)$ e della $\psi(3770)$) è stata analizzata in dettaglio per la prima volta.

La conclusione è che un possibile contributo dalla sezione d'urto del continuo del processo $e^+e^- \rightarrow J/\psi \pi^+\pi^-$ in questa regione, non può essere escluso.

$e^+e^- ightarrow \gamma J/\psi \pi^+\pi^-$ - Fino a 5.5 GeV/c²

- Un extendend-maximum-likelihood fit è stato effettuato nella regione di segnale $J/\psi \pi^+\pi^-$ simultaneamente alla distribuzione del fondo nella regione 3.74-5.5 GeV/c².
- La funzione di fit include la dipendenza dalla massa dell'efficienza e della luminosità, ed è composta da una BW relativistica per la Y(4260), un polinomio del terzo ordine per descrivere il fondo; una funzione empirica esponenziale che descrive l'eccesso di eventi sotto al di sotto dei 4 GeV/c² che possono derivare dalla coda della $\psi(2S)$ e da un contributo $J/\psi\pi^+\pi^-$ non risonante.

$$\begin{split} & \mathsf{Mass}\;(\mathsf{Y}(4260)) = 4244{\pm}5{\pm}4\;\mathsf{MeV}/\mathsf{c}^2\\ & \mathsf{\Gamma}(\mathsf{Y}(4260)){=}114^{+16}_{-15}{\pm}7\;\mathsf{MeV} \end{split}$$

 $\Gamma_{e^+e^-} \times B(J/\psi \pi^+\pi^-) = 9.2 \pm 0.8 \pm 0.7 \text{ eV}$

Nessuna evidenza per lo stato a ${\sim}4\text{GeV}/\text{c}^2$ osservato da Belle.

Distribuzione di massa invariante $\pi^+\pi^-$ nel decadimento della Y(4260)

- Per 4.15 $\leq m(J/\psi\pi^{+}\pi^{-}) \leq$ 4.45 GeV/c²
- La distribuzione sembra avere un massimo attorno alla massa della $f_0(980)$; tuttavia il picco è spostato rispetto alla posizione reale della $f_0(980)$.
- Il fatto che il massimo della distribuzione è spostato rispetto al valore nominale, suggerisce una possibile interferenza tra la f₀(980) e il continuo.

- E' stato definito l'angolo θ_{π} come l'angolo tra la direzione del π^+ e quella della J/ψ entrambe nel sistema di riferimento del dipione.
- La distribuzione, che deve essere simmetrica, è consistente con il comportamento di un'onda S $(\chi^2/NDF = 12.3/9; \text{ probability}=19.7\%).$

Distribuzione di massa invariante $\pi^+\pi^-$ nel decadimento della Y(4260)

Per descrivere la distribuzione di massa $\pi^+\pi^-$ è stato utilizzato un modello composto dal quadrato di un'ampiezza uguale alla somma coerente di una componente non risonante e da un'ampiezza della f_0 (980)

La distribuzione dell'ampiezza della $f_0(980)$ e della sua fase sono state prese dalla precedente analisi di *BABAR* del decadimento $D_s^+ \rightarrow \pi^+\pi^-\pi^+$.

 $\begin{array}{c} \text{PRD 79, 032003 (2009)} \\ \begin{array}{c} & & \\ & &$

E' stata ottenuta una buona descrizione della distribuzione di massa invariante $\pi^+\pi^-$. Questo indica che vi è un contributo della $f_0(980)$ dovuto al decadimento della Y(4260) in $J/\psi\pi^+\pi^-$ ma esso non è dominante.

$$\frac{B(Y_{4260} \rightarrow J/\psi_{f_0}(980), f_0(980) \rightarrow \pi^+\pi^-)}{B(Y_{4260} \rightarrow J/\psi\pi^+\pi^-)} = (17 \pm 13)\%$$

Sommario I

Ricerca degli stati $Z_1(4050)^+$ e $Z_2(4250)^+$ nei decadimenti $\bar{B}^0 \rightarrow \chi_{c1} K^- \pi^+$ e $B^+ \rightarrow \chi_{c1} K^0_s \pi^+$

PRD 85, 052003 (2012)

 $B(\bar{B}^0 \rightarrow Z_1^+ K^-) x(B(Z_1^+ \rightarrow \chi_{c1} \pi^+) < 1.8 \times 10^{-5}$ Nessuna risonanza osservata.

 $B(\bar{B}^0 \rightarrow Z_2^+ K^-) x(B(Z_2^+ \rightarrow \chi_{c1} \pi^+) < 4.0 \times 10^{-5}$ Nessuna risonanza osservata.

 $B(\bar{B}^0 \rightarrow Z^+ K^-) x (B(Z^+ \rightarrow \chi_{c1} \pi^+) < 4.7 \times 10^{-5}$ Nessuna risonanza osservata.

Studio dello stato finale $J/\psi \omega$ in fusione $\gamma\gamma$:

I risultati di Belle sono stati confermati per il processo $\gamma\gamma \rightarrow X(3915) \rightarrow J/\psi$ ω :

 $\Gamma_{\gamma\gamma}(X(3915))B(X(3915) \to J/\psi \ \omega)(J=0)) = (52 \pm 10 \pm 3) \text{ eV}$

 $\Gamma_{\gamma\gamma}(X(3915))B(X(3915)
ightarrow J/\psi \; \omega)(J=2)) = (10.5 \pm 1.9 \pm 0.6) \; {
m eV}$

BABAR Nuovo limite per $\gamma\gamma
ightarrow X(3872)
ightarrow J/\psi$ ω :

 $\Gamma(X(3872)) \times B(X(3872) \to J/\psi \ \omega) < 1.7 \text{ eV @ 90\% CL}$

Sommario II

Ricerca di risonanze nello stato finale $\eta_c \pi^+ \pi^-$ utilizzando interazioni $\gamma\gamma$

Nuovi limiti al decadimento in $\eta_c \pi^+ \pi^-$:

- $B(\chi_{c2}(1P) \rightarrow \eta_c(1S)\pi\pi) < 2.2\%$ @90% CL Nessuna risonanza osservata.

- $B(\eta_c(2S) \rightarrow \eta_c(1S)\pi\pi) <$ 7.4% @90% CL Nessuna risonanza osservata.

Studio del processo $e^+e^- \rightarrow J/\psi \pi^+\pi^-$ via ISR:

arXiv:1204.2158v1 Sottomesso a PRD

-
$$\sigma(e^+e^-
ightarrow \psi(2S)){=}14.5{\pm}0.7$$
 pb

- $\Gamma(\psi(2S)
 ightarrow e^+e^-)=$ 2.29 \pm 0.05 keV
- I parametri della Y(4260) sono stati stabiliti con maggiore precisione.
- $\Gamma_{e^+e^-} x B(J/\psi \pi^+\pi^-) = 9.2 \pm 0.8 \pm 0.7 \text{ eV}$

- Distribuzione di massa invariante $\pi^+\pi^-$: $\frac{B(Y_{4260} \rightarrow J/\psi f_0(980), f_0(980) \rightarrow \pi^+\pi^-)}{B(Y_{4260} \rightarrow J/\psi \pi^+\pi^-)} = (17 \pm 13)\%$

ロト くぼと くほと くほう

Analisi in corso sul charmonio a BABAR

- Decadimento dei mesoni B:
 - $B \rightarrow KJ/\psi\phi$
- Produzione ISR:
 - $e^+e^- \rightarrow J/\psi K^+K^-$
- Interazioni $\gamma\gamma$:
 - $-\gamma\gamma \to K\bar{K}\pi$ $-\gamma\gamma \to \eta K\bar{K}$
- Doppio charmonio
 - $e^+e^-
 ightarrow J/\psi c ar c$
 - $e^+e^-
 ightarrow \psi(2S)car{c}$

Molti risultati interessanti sono stati ottenuti, ma per una miglior comprensione dello spettro del charmonio è richiesto un maggior numero di dati.

· < /₽ > < ≥ > <

BACKUP SLIDES

イロト イヨト イヨト

The BABAR experiment and data sample

Features

- Asymmetric beams energies: $E_{e^-}=9$ GeV, $E_{e^+}=3.1$ GeV; $\beta=0.56$ in the CM frame. For $\sqrt{s}=10.58$ GeV, the $\Upsilon(4S)$ mass
- Integrated luminosity: 431 fb^{-1} at $\Upsilon(4S)$ resonance (On-Peak), 45 fb^{-1} 40 MeV below (Off-Peak).
- Data taken period: 1999-2008

A B > A B >

BABAR is a B factory: 467 million $B\overline{B}$ pairs in the total data sample. BABAR is also a *c* factory: 1.3 million charm events per fb⁻¹.

Search for the $Z_1(4050)^+$ and $Z_2(4250)^+$ - Analysis procedure II

Using the information from the $K\pi$ system a description of the $\chi_{c1}\pi$ mass distribution is studied. A MC simulation for $B \rightarrow \chi_{c1}K\pi$ has been performed. The best χ^2/NDF obtained is for $L_{max} = 5$.

The result of the simulation with $L_{max} = 5$ is superimposed on the data. The excellent description of the data indicates that the angular information from the $K\pi$ channel with $L_{max} = 5$ is able to account for the structures observed in the $\chi_{c1}\pi$ projection. This indicates the absence of significant structure in the exotic $\chi_{c1}\pi^+$ channel.

A 25% contribution of Z_2^+ (4250) in the $\bar{B^0} \rightarrow \pi^+ K^- \chi_{c1}$ is added on a MC simulation. The Legendre polynomial moments is then computed. The resulting MC simulation does not describe the MC data well.

$\gamma\gamma ightarrow J/\psi\omega$ - Event selection

Reconstruction

•
$$J/\psi \rightarrow \ell^+\ell^-$$
 ($\ell=e,\mu$); $\omega \rightarrow \pi^+\pi^-\pi^0$, $\pi^0 \rightarrow \gamma\gamma$

• $m(e^+e^-) \in [2.95, 3.14]; m(\mu^+\mu^-) \in [3.05, 3.14]; m(\pi^+\pi^-\pi^0) \in [0.74, 0.82] \text{ GeV/c}^2$

Main event selection

- Four charged tracks
- $M_{miss}^2 = (p_{e^+e^-} p_{J/\psi\omega})^2 > 2(GeV/c^2)^2$
- *p*_T < 0.2 GeV/c
- E_{extra} (EMC energy not associated with the final state particles) <0.3 GeV

$\gamma\gamma \rightarrow \eta_c \pi^+ \pi^-$ - Event selection

Reconstruction

- $\eta_c \to K_s^0 K^{\pm} \pi^{\mp}; K_s^0 \to \pi^+ \pi^-$
- $m(K_s^0 K^{\pm} \pi^{\mp}) \in [2.77, 3.22];$
- The sample used to search for the process $\gamma\gamma \to X \to \eta_c \pi^+ \pi^-$ is referred to as the "main sample".
- Properties of the η_c and its decay into $K_s^0 K^{\pm} \pi^{\mp}$ are studied with a separate "control sample" of $\gamma \gamma \rightarrow \eta_c \rightarrow K_s^0 K^{\pm} \pi^{\mp}$ events.

Main event selection

• Six charged tracks

•
$$M_{miss}^2 = (p_{e^+e^-} - p_X)^2 > 10(GeV/c^2)^2$$

- $p_T < 1.5 \text{ GeV/c}$
- E_{extra} (EMC energy not associated with the final state particles) <0.8GeV
- Study of the η_c Dalitz Plots to select the signal region.
- Neural Network studies in order to remore additional backgrounds, with inputs: p_T ; E_{extra} ; K and π ID.

(日)

$e^+e^- ightarrow \gamma J/\psi \pi^+\pi^-$ - Event selection

The goal is to study the final state $J/\psi\pi^+\pi^-$ after initial state radiation

Reconstruction

- J/ψ candidates is reconstructed via its decay to $\mu^+\mu^-$ or to e^+e^- .
- $m(e^+e^-) m(J/\psi) \in [-75, +55] \text{ MeV/c}^2$; $m(\mu^+\mu^-) m(J/\psi) \in [-55, +55] \text{ MeV/c}^2$
- The background is estimated using the J/ψ sidebands.

Main event selection

- Four charged tracks
- To select ISR events:

$$-M_{miss}^{2} = (p_{e^{+}e^{-}} - p_{J/\psi\pi^{+}\pi^{-}})^{2} \in [-0.50, +0.75](GeV/c^{2})^{2}$$

- *p_{T_{miss}*<2.25 GeV/c}