Calcoli di precisione ed incertezze teoriche per le osservabili elettrodeboli ai collisori adronici

giuseppe bozzi

Università degli Studi di Milano and INFN Sezione di Milano

IFAE 2012 Ferrara, 12.04.2012

3 > < 3 >

Outline

Introduction

- 2 NNLO calculations: methods and associated uncertainties
- 3 Numerical resummation: methods and associated uncertainties
- Analytical resummation: methods and associated uncertainties
- 5 Impact of PDF uncertainties on W mass measurements

Introduction

Hadronic cross sections in perturbative QCD

- h_1, h_2 = initial state hadrons (with momenta p_1, p_2)
- f_a, f_b = parton distribution functions
- C = coefficient functions (partonic splitting)
- H = perturbatively computed partonic event
- **F** = final state particle(s)
- S = resummation of soft radiation from incoming partons
- Precise predictions depend on good knowledge of f,C,H and S!

K-factor

• LO cross sections suffer from large scale uncertainties

- $\rightarrow \sigma^{part}$ does not depend on μ_{R}, μ_{F}
- \rightarrow pdf and α_{S} dependence are not balanced
- $\rightarrow~$ LO gives just the order of magnitude
- Reliable central values start at NLO

$$\mathcal{K} = rac{\sigma_{HO}(pp
ightarrow H + X)}{\sigma_{LO}(pp
ightarrow H + X)}$$

→ α_S and pdfs have to be consistently evaluated at HO and LO (otherwise K artificially large, since α_S (NLO) < α_S (LO))

→ NLO error not reliable

NNLO can give a realistic estimate of theoretical uncertainty

Scale dependence

- Usually one fixes a "natural" scale μ_0 (typically the one that allows to absorb large logarithms...)
- Then μ_R, μ_F are independently or collectively varied within

 $\frac{\mu_0}{a} \le \mu_F, \mu_R \le \mu_0 a$

- Dependence on $\mu_R, \mu_F \rightarrow$ evaluation of theoretical uncertainty?
 - → The narrower the uncertainty band is, the smaller the HO corrections are expected to be (not always true!)
 - → In principle the scale uncertainty should be reduced when going to higher orders (not always true!)
 - → BUT remember that all this is unphysical and there is no rigorous way to estimate the theoretical uncertainty other than performing the higher-order calculation!

イロン イ理 とく ヨン イヨン

Introduction

Parton Distribution Functions

- Differences between pdfs arise from
 - \rightarrow choice of data points
 - \rightarrow theoretical assumptions made for the fit
 - → choice of tolerance used to define the error in the fit
- Low-x (x<10⁻³) and high-x (x>0.7) regions are critical: uncertainties of a few tens of %
- Intermediate-x region more reliable: uncertainties of a few %
- No clear separation between regions in the gluon case

Outline

Introduction

- 2 NNLO calculations: methods and associated uncertainties
- 3 Numerical resummation: methods and associated uncertainties
- 4 Analytical resummation: methods and associated uncertainties
- 5 Impact of PDF uncertainties on W mass measurements

A NNLO calculation

- For a general $2 \rightarrow n$ process we need
 - Two-loop amplitude for $2 \rightarrow n$
 - One-loop amplitude for $2 \rightarrow n+1$
 - Tree-level amplitude for $2 \rightarrow n+2$
- Each term has its own singularities
 - Ultraviolet (removed by renormalization)
 - Infrared (have to cancel among each other)
- → Much more difficult than NLO cancellation!
- 1 Fully inclusive quantities
 - analytical computation of contributions is possible
 - explicit cancellation of singularities
- 2 Fully exclusive quantities (real world!)
 - IR singularity structure at NNLO understood

[Catani, Grazzini; Campbell, Glover; Bern, DelDuca, Kilgore, Schmidt;

Kosower, Uwer; Sterman, Tejeda-Yeomans]

< ロ > < 同 > < 回 > < 回 >

- numerical integration still very difficult
- → Sector Decomposition
- → Subtraction Method

Sector Decomposition

"Split the integration region into sectors, each containing a single singularity, and explicit the pole by expanding it into distributions"

Binoth, Heinrich[00,04]; Anastasiou, Melnikov, Petriello[04]

AMP developed a fully automated procedure to compute pole coefficients and finite terms and applied it to

Higgs (FEHiP, 2005), W/Z (FEWZ, 2006)

Subtraction Method

"Add and subtract a local counterterm with the same singularity structure of the real contribution that can be integrated analytically over the phase space of the unresolved parton"

> (NNLO):Kosower[03,05];Weinzierl[03];Frixione,Grazzini[04]; Gehrmann,Glover[05];Somogyi,Trocsanyi,DelDuca[05,07]

Applications: *HNNLO* (2007), *DYNNLO* (2009), *2γNNLO* (2011)

 $\texttt{H:Catani,Grazzini[07];W,Z,} \gamma \gamma \texttt{:Catani,Cieri,DeFlorian,Ferrera,Grazzini[09,11]}$

NNLO uncertainty

Differences between the two prescriptions: at the level of statistical precision

Theoretical uncertainty = PDF and scale variation, BUT be careful!

giuseppe bozzi (uni milano)

Outline

Introduction

2 NNLO calculations: methods and associated uncertainties

Numerical resummation: methods and associated uncertainties

- 4 Analytical resummation: methods and associated uncertainties
- Impact of PDF uncertainties on W mass measurements

The need for resummation

Partonic cross section as a perturbative series

$$\sigma_{ab}^{part}(p_1, p_2, Q, Q_i, \mu_R, \mu_F) = \alpha_s^k(\mu_R)[\sigma_{LO}(p_1, p_2, Q, Q_i) \\ + \alpha_s(\mu_R)\sigma_{NLO}(p_1, p_2, Q, Q_i, \mu_R, \mu_F) \\ + \alpha_s^2(\mu_R)\sigma_{NNLO}(p_1, p_2, Q, Q_i, \mu_R, \mu_F) + \dots]$$

- The fixed-order result gives reliable result only when all the scales are of the same order of magnitude
- If Q_i >> Q or Q_i << Q, the appearance of α_slog(Qi/Q) terms could spoil the perturbative result: they need to be resummed!

An example: the small- q_T region $(q_T \ll Q)$

- Bulk of the events in the region $q_T \ll Q$
- Kinematical unbalance between real and virtual contributions
- \rightarrow perturbative coefficients enhanced by $\alpha_{S}^{n} \log^{m}(\frac{Q^{2}}{\sigma_{z}^{2}})$
- ightarrow convergence of perturbative result completely spoiled

→ need for resummation!

Parton Shower vs. Matrix Elements

Parton Shower Generator	Matrix Element Generator			
Resums leading logs to all orders	Only go up to NLO			
High multiplicity hadrons in final state	Low multiplicity partons in final state			
Good for regions of low relative p_T	Good for regions of high relative p_T			
Total rate accurate to LO	Total rate accurate to NLO			

The perfect matching

- generates total rates accurate at NLO
- treats hard emission as in Matrix Element Generators
- treats soft/collinear emission as in Parton Shower Generators
- generates a set of fully exclusive events which can be interfaced with a hadronization model

NLO matching

• MC@NLO [Frixione, Webber(02)]

- add difference between exact(ME) NLO and approx.(PS) NLO
- automatization (aMC@NLO) based on FKS subtraction @ NLO

[Frederix, Frixione, Maltoni, Stelzer(09)]

- → dependent on the shower details
- → difference may be negative

• POWHEG [Nason(04)]

- Generate the hardest emission at NLO accuracy (mod. Sudakov)
- Angular-ordered showers: add truncated shower from hard scale
- always positive weights
- → discrepancies with respect to MC@NLO thoroughly analysed in several publications

ヨトイヨト

NLO matching uncertainties

Differences between matching procedures

< <p>A < </p>

Outline

Introduction

- 2 NNLO calculations: methods and associated uncertainties
- 3 Numerical resummation: methods and associated uncertainties
- Analytical resummation: methods and associated uncertainties
- Impact of PDF uncertainties on W mass measurements

Analytical Resummation: the main idea

$\alpha_s L^2$	$\alpha_{s}L$			$\mathcal{O}(\alpha_s)$	(<i>LO</i>)
$\alpha_s^2 L^4$	$\alpha_s^2 L^3$	$\alpha_s^2 L^2$	$\alpha_s^2 L$	$\mathcal{O}(\alpha_s^2)$	(NLO)
$\alpha_s^n L^{2n}$	$\alpha_s^n L^{2n-1}$	$\alpha_s^n L^{2n-2}$		$\mathcal{O}(\alpha_s^n)$	(N^nLO)
LL	NLL	NNLL			

- Ratio of two successive rows: $\mathcal{O}(\alpha_s L^2)$
- improved expansion
 - reorganization of the terms into towers of logs
 - all-order summation of the terms in each class
- key-point: exponentiation in a conjugate space (Fourier, Mellin)

 $\sigma^{res} \sim \exp\left[Lg_1(\alpha_s L) + g_2(\alpha_s L) + \alpha_s g_3(\alpha_s L) + \dots\right] \quad (L = \log(Qb/b_0)$

• Ratio of two successive columns: O(1/L)

Going back to the physical space

Problem:

Resummation involves integration over b from 0 to ∞ : $\alpha_s(1/b)$ large when $b \rightarrow 1/\Lambda_{QCD}$, how to go back?

Proposed solutions

 return to p_T space (expansion of the exponent + inverse transformation performed analytically)

[Ellis, Veseli (97); Frixione, Nason, Ridolfi (99); Kulesza, Stirling (99-03)]

integration over a complex b-plane to avoid singularities

[Laenen, Sterman, Vogelsan(00); Kulesza, Sterman, Vogelsang(02) Bozzi, Catani, DeFlorian, Grazzini (05-09)]

- extrapolation of perturbative results into large-b region [Qiu,Zhang(01)]
- using Borel resummation [Bonvini,Forte,Ridolfi(08)]
- Improved matching [Bozzi,Catani,DeFlorian,Grazzini(05,07,09)]

$$ilde{L} = \log(rac{bQ}{b_0} + 1)
ightarrow \int dp_T rac{d\sigma_{NLO}}{dp_T} = \sigma_{NNLO}$$

→introduction of resummation scale ←

Drell-Yan at NNLL+NLO [BOZZI, Catani, deFlorian, Ferrera, Grazzini (10)]

- Normalized q_T distribution
- Scales fixed to Z mass
- → Uncertainty dominated by Q variation
- \rightarrow Good agreement with Run II D0 data
- \rightarrow Experimental errors are smaller than theoretical uncertainty
- most accurate QCD perturbative prediction for W and Z

giuseppe bozzi (uni milano)

Higgs @ NNLL+NLO [Bozzi, Catani, DeFlorian, Grazzini (03, 05, 07)]

- NNLL+NLO uncertainty band overlaps with NLL+LO one
 - $\rightarrow\,$ very good convergence of the resummed perturbative result
- *q_T*-dependent K-factor

$$K(q_T) = \frac{d\sigma_{NNLL+NLO}(\mu_F, \mu_R)}{d\sigma_{NLL+LO}(\mu_F = \mu_R = M_H)}$$

- \sim 1.1-1.2 in the central region
- increase (decrease) drastically for q_T > 50 (q_T < 2)
- $\rightarrow~$ no simple rescaling of NLL+LO
- similar features when including rapidity dependence

∃ >

Analytical resummation uncertainties

Differences between resummation prescriptions: work in progress!

A. Kulesza, p_T resummation for colour-singlet hadronic production - p. 24/28

Theoretical uncertainty = PDF, choice of prescription

giuseppe bozzi (uni milano)

IFAE 2012

Ferrara, 12.04.2012 23 / 29

Outline

Introduction

- 2 NNLO calculations: methods and associated uncertainties
- 3 Numerical resummation: methods and associated uncertainties
- Analytical resummation: methods and associated uncertainties
- Impact of PDF uncertainties on W mass measurements

Normalized lepton pair transverse mass

$$\mathcal{O}\left(M_{\perp}^{W}\right) = \frac{d\sigma}{dM_{\perp}^{W}}\left(M_{\perp}^{W}\right), \qquad M_{\perp}^{W} = \sqrt{2p_{t}^{\prime}p_{t}^{\nu}\left(1 - \cos\left(\phi^{\prime} - \phi^{\nu}\right)\right)}$$

- QCD corrections quite moderate with respect to lepton p_T
- small QCD effects on the shape of the distribution
- PDF uncertainties induce similar effects w.r.t. other observables

$$\widetilde{\mathcal{O}}\left(M_{\perp}^{W}\right) = \frac{1}{\sigma^{\text{fit}}} \frac{d\sigma}{dM_{\perp}^{W}} \left(M_{\perp}^{W}\right), \qquad \sigma^{\text{fit}} = \int_{M_{\perp}^{W,\text{min}}}^{M_{\perp}^{W,\text{max}}} dM \frac{d\sigma}{dM_{\perp}^{W}} \left(M\right)$$
$$(M_{\perp}^{W,\text{min}} = 50 \text{ GeV}, M_{\perp}^{W,\text{max}} = 100 \text{ GeV})$$

normalization greatly reduces the effect of PDF uncertainty

The fitting strategy [Bozzi, Rojo, Vicini(11)]

- generate templates for a given fixed PDF set and for different values of m_W with very high statistics (1B events)
- of reach member of the PDF sets considered, generate pseudo-data with fixed $m_W^0 = 80.398$ GeV with lower statistics (100M events)

(a) compute the χ^2 between the pseudo-data and each of the templates

$$\chi_j^2 = \frac{1}{N_{\text{bins}}} \sum_{i=1}^{N_{\text{bins}}} \frac{\left(O_i^j - O_i^{\text{data}}\right)^2}{(\sigma_i^{\text{data}})^2 + (\sigma_i^j)^2} \qquad j = 1, \dots, N_{\text{templates}}$$

• the template with best χ^2 provides the information on Δm_W induced by this particular PDF set

Impact of PDF uncertainties on W mass measurements

The fitting strategy [Bozzi, Rojo, Vicini (11)]

NLO-QCD results [Bozzi, Rojo, Vicini (11)]

(0.10)						1	
m _W (GeV)	CIEQ6.6		MS1W2008		NNPDF2.1		
	$m_W \pm \delta_{ m pdf}$	$\langle \chi^2 \rangle$	$m_W \pm \delta_{ m pdf}$	$\langle \chi^2 \rangle$	$m_W \pm \delta_{ m pdf}$	$\left\langle \chi^{2} \right\rangle$	$\delta_{\rm pdf}^{\rm tot}$
Tevatron, W [±]	80.398 ± 0.004	1.42	80.398 ± 0.003	1.42	80.398 ± 0.003	1.30	4
LHC 7 TeV W ⁺	80.398 ± 0.004	1.22	80.404 ± 0.005	1.55	80.402 ± 0.003	1.35	8
LHC 7 TeV W ⁻	80.398 ± 0.004	1.22	80.400 ± 0.004	1.19	80.402 ± 0.004	1.78	6
LHC 14 TeV W ⁺	80.398 ± 0.003	1.34	80.402 ± 0.004	1.48	80.400 ± 0.003	1.41	6
LHC 14 TeV W ⁻	80.398 ± 0.004	1.44	80.404 ± 0.006	1.38	80.402 ± 0.004	1.57	8

NLO-QCD, normalized transverse mass distribution

total (envelope) error at most 8 MeV + excellent agreement at Tevatron

Conclusions

There are MANY sources of theoretical uncertainties!

- factorization scale
- renormalization scale
- resummation scale
- type of resummation (shower vs. analytical)
- non-perturbative contributions
- different PDF parametrizations
- \rightarrow a detailed investigation is essential