Testing ECAL at LNF and studies for the new FEE

Antonio Di Domenico Dipartimento di Fisica, Sapienza Università di Roma and INFN-Roma, Italy

on behalf of the SAND-ECAL WG

CSN1 Review of SAND – LNF – 11 July 2024

ECAL test at LNF

Refurbishment area

(In total test+refurbishment ~85 mq in bld.57)

ECAL test at LNF

PMTs will be dismounted, light guides cleaned, new optical gel applied, and PMT re-mounted.

ECAL module refurbishment and test

Bicron optical gel BC-630

Fig. 4. Exploded view of the PM box.

ECAL test at LNF

For the ECAL module test the KLOE electronics will be reused

VME bridge trigger distributor NIM modules for trigger logic

CAEN HV power supply

KLOE Low Voltage power supply (380~V) +/-6V (2x 300W) => PMT preamp, FEE etc. $+/-$ 5.2 (2x 280W) => digital circuitry

KLOE ADC CAEN VX559 (30 ch.) 8 boards KLOE TDC CAEN VX569 (30 ch.) 8 boards

KLOE SDS 8 boards: spllitter + discriminators on 30 ch./board common tunable threshold(low+hign thr.)

ECAL test at LNF: End-cap modules

Design of supports for handling and transportation of each half End-cap.

ECAL module refurbishment and test

- After dismounting operation, the special protective adesive tape of all barrel modules has to be replaced; gluing of delaminated modules, etc.
- check light tightness of module and PMT working;
- test basic performance with cosmics rays
- test FEE prototypes (comparison with old KLOE electronics)

Shifts of trained technicians and physicists

Test box for testing PMTs

ECAL: procurement of HV and LV power supply

Offer CAEN updated July 2024

- n° 102 board A7030P (48 ch.) = 527k euro
- n° 7 Sistem SY4527B = 41k euro
- n° 7 Power supply booster A4533 = 12k euro

TOTAL: **580k euro** (IVA escl.)

```
spare: 10 5 A7030P + 2 1 SY4527B + 2 1 A4533 = 67k 34k euro (IVA escl.)
warranty ext. 3 years: = 53k euro (IVA escl.)
```
one complete spare system to be used to test slow-control software

n° 10+2 spare board A25251 8 full floating channels 8V/12A = **31k euro** (IVA escl.)

Mapping of present HV cables 5x12ch on 48 ch. modularity not trivial (to be studied also for LV) => under study to minimize cost (custom connectors or patch panel)

Studies for the optimization of the ECAL working point and FEE

A. Di Domenico, V. Di Silvestre, P. Gauzzi, D. Truncali - INFN-RM1 A. Balla - INFN-LNF

this configuration would substantially enhance the discovery potential of the precision tests of fundamental \blacksquare intring anargy snactrum in $\blacksquare\blacksquare\blacksquare\blacksquare$ **Neutrino energy spectrum in DUNE** \blacksquare outring onorgy spectrum in \blacksquare beam configuration (Fig. 87), resulting in an increase of the expected event rates by a factor 2.4 with respect to the default beam (Tab. 3). A realistic scenario could be that after completing a data taking of

 $\overline{}$ years with the standard FHC beam and $\overline{}$ years with the standard RHC beam, we can have dedicated beam, we can have dedicated by

and considering a 120 GeV proton beam in both FHC and RHC modes. and considering a 120 GeV proton beam in both FHC and RHC modes. Figure 89: Energy spectra of CC interacting neutrinos in the internal LAr target, having a mass of 1.01 ton,

expected to be upgraded from 1.2 MW to 2.4 μ MW to 2.4 MW to 2.4 MW to 2.4 MW.

A. Di Domenico CSN1 Review of SAND – LNF – 11 July 2024

SAND MC simulation

- 100 files
- Total evts $= 118592$
- Total p.o.t = 1.011×10^{17}
- p.o.t./spill = 7.5×10^{13} at 1.2 MW beam power
- corresponding to \sim 30 minutes of data taking in FHC mode (or equivalently to ∼15 min at 2.4 MW)
- Inner Fiducial Volume (IFV) defined at a distance of 20 cm from ECAL internal surface

spectrum in the whole energy range

Digitization of ECAL similar to KLOE MC:

• Deposited energy in the cells propagated to PMTs with double exp. attenuation curve

 $f(x) = Ae^{-\frac{x}{\lambda_1}} + (1 - A)e^{-\frac{x}{\lambda_2}}$

- Converted into p.e. number \Rightarrow 18.5 p.e./MeV of deposited energy (MIP at the module center \sim 40 p.e.)
- Light yield \sim 1 p.e./MeV of total energy of the particle
- Threshold = 2.5 p.e.
- Constant fraction discriminator at 15% ot fhe signal
- Multihit TDC simulation (30 ns integration time + 50 ns dead time)

PE distribution

PE distribution

140 16
PE number

160

PE distribution

PE distribution at E_v fixed

Total PE number distribution at E_v fixed

80

 100

 120

Total PE release

events count

 $10⁴$

 10^3

 $10²$

 10

 $\overline{20}$

 40

60

for a detailed simulation of the calorimeter structure. The

Measurement of the neutron response of the KLOE EmC

- M. Anelli et al., *"Measurement and simulation of the neutron response and detection efficiency of a Pbscintillating fiber calorimeter "*, NIM **A581** (2007) 368
- M. Anelli et al., *"Measurement of the neutron detection efficiency of a 80% absorber–20% scintillating fibers calorimeter "*, NIM **A626** (2011) 67

These preliminary results show that the lowest trigger trigger trigger that at the lowest trigger trigger trigger trigger that the lowest transformation of the lowest transformation of the lowest transformation of the lowe threshold threshold threshold threshold the calori- \blacksquare that has to be treated by FEE is the intensity. It corresponds to a size \mathbb{R}^n size \mathbb{R}^n respect to the expected \blacksquare based on the amount of scientification on lator only. For comparison, the efficiency of the 5 cm parison, the 5 cm parison of $\frac{1}{2}$. Among the produced secondaries, $\frac{1}{2}$ lowest possible, ideally 1-3 Np.e. **The remaining while the remaining the remaining of the remaining term** 4% are nuclear fragments. Typical inelastic reactions on • to maximize the neutron detection. Γ \sim at the source, at the collimator exit and on the collimator exit and on the calculation on the calculation on the calculation of Γ efficiency by ECAL the MINIMUM Np.e.

ARTICLE IN PRESS

and so on. Low-energy neutrons (below 19.6 MeV) are

Cell occupancy plots and hit probability

Beam power 1.2 MW 7.5 x 1013 protons extracted every 1.2 s at 120 GeV 1.1 \times 10²¹ pot/year

Spill time structure

- \cdot 9.6 μ s per spill
- 6 batches, 84 bunches/batch
- 2 empty bunches
- 1 bunch: Gaus(σ = 1.5 ns)
- \triangle t bunches = 19 ns

time (ns)

\sim 1 in ≲1 interaction/spill in the SAND fiducial volume Event rates expected in SAND **~ 84 interactions/spill**

Pile-up probability

The beam time structure is reconstructed to simulate the spills with 0 hit $\sqrt{ }$ 1 hit time of the neutrino interaction event and calculate the pile-*10 ⁵* 164313 Entries up probability that, given a PMT signal, a second signal Mean 4.257 ap prosessing that, given a minit sight, a second eight.
arrives within a fixed time window (TW) after the first signal. **RMS** 5.209 *10 ⁴* **UDFLW** 0.000 OVFLW 0.000 **N.I. CHAN O. 1643F+06** *10 ³ 10 ²* The times of N interactions per spill (in average **N=84** with *10 ²* 1.2 MW beam) are extracted uniformly between 0 and 9.6 μs. The time difference between two consecutive interactions is *10* calculated for all spills, following an exponential distribution with $T_{\text{solid}} \simeq 114$ ns. From this, the distribution of time *dillo*
be kit of D *0 5 10* differences for a single cell with a probability to be hit of $\mathsf{P}_{\mathsf{cell}}$ **e** hit of $\mathsf{P}_{\mathsf{coll}}$ **delta time cell (us)** = 1.16% is evaluated, and then the pile-up probabilities for Time [ns] h time 1.10% is evaluated, and then the pile up probabilities is
different time windows are also evaluated, TW = 50, 400, $\frac{p}{2}$ and then the pile-up probabilities for Entrine 949846 36.95 150, 200 ns. $10⁴$ before smearing after smearing *10 ³* 10^{2} P_{CEL} [%] 1.16 1.5 2.0 1.16 1.16 2.0 *10* pile-up probability (%)Time window [ns] 10 50 0.67 0.90 1.28 0.64 0.86 1.36 100 | 1.33 | 1.81 | 2.52 || 1.32 || 1.71 | 2.56 *0 2.5 5 7.5 10* 150 | 1.95 | 2.71 | 3.72 || 1.91 | 2.60 | 3.78 2.60 | 3.78 Time propagation/smearing of hits in bagation/smearing of **a** 3.48 **b** 4.93 200 2.59 3.58 4.87 2.52 3.48 4.93 a single neutrino interaction event.

 \overline{u}

Pile-up probability

The beam time structure is reconstructed to simulate the spills with 0 hit $\sqrt{ }$ 1 hit time of the neutrino interaction event and calculate the pile-*10 ⁵* 164313 Entries up probability that, given a PMT signal, a second signal Mean 4.257 ap prosessing that, given a minit sight, a second eight.
arrives within a fixed time window (TW) after the first signal. **RMS** 5.209 *10 ⁴* **UDFLW** 0.000 OVEL W 0.000 **N.I. CHAN O. 1643F+06** *10 ³ 10 ²* The times of N interactions per spill (in average **N=84** with *10 ²* 1.2 MW beam) are extracted uniformly between 0 and 9.6 μs. The time difference between two consecutive interactions is *10* calculated for all spills, following an exponential distribution with $T_{\text{solid}} \simeq 114$ ns. From this, the distribution of time *dillo*
be kit of D *0 5 10* differences for a single cell with a probability to be hit of $\mathsf{P}_{\mathsf{cell}}$ **e** hit of $\mathsf{P}_{\mathsf{coll}}$ **delta time cell (us)** = 1.16% is evaluated, and then the pile-up probabilities for Time [ns] h time 1.10% is evaluated, and then the pile up probabilities is
different time windows are also evaluated, TW = 50, 400, $\frac{p}{2}$ and then the pile-up probabilities for Entrine 150, 200 ns. $10⁴$ before smearing after smearing *10 ³* 10^{2} P_{CEL} [%] 1.16 1.5 2.0 1.16 1.16 2.0 *10* pile-up probability (%)Time window [ns] 10 50 0.67 0.90 1.28 0.64 0.86 1.36 100 1.33 1.81 2.52 1.32 1.71 2.56 *0 2.5 5 7.5 10* 2.60 | 3.78 150 | 1.95 | 2.71 | 3.72 || 1.91 | 2.60 | 3.78 Time propagation/smearing of hits in bagation/smearing of **a** 3.48 **b** 4.93 200 2.59 3.58 4.87 2.52 3.48 4.93 a single neutrino interaction event.

 \overline{u}

PMT signal and discriminator threshold in KLOE

Choice of the dynamic range in KLOE

The dynamic range in terms of N_{pe} and the PMT gain G_{PM} can be evaluated using the following constraints for the FEE after the PMT:

- Minimum discriminator threshold V_{TH} = 5 mV
- Preamplifier linearity (within 0.2%) range = $[0, 4.7]$ V => V_{preamp}(max) = 4.7 V
- preamp transimpedance gain G= 250 V/A => $I_{peak}(max)=19$ mA => max signal charge Q(max)=133 pC (triangle approx.); from $Q = e$ N_{pe} G_{PM} => (N_{pe} G_{PM})(max) = 83·10⁷
- $G_{\text{TOT}} = G_{\text{PM}} G_{\text{preamp}}$ with $G_{\text{preamp}} \approx 2.5$
- 12m long cable attenuation: $C_{ATT} = 0.74$
- MAX single pulse amplitude at the discriminator/digitizer input is: V_{dis} (max) = V_{preamp} (max) • 0.5 • C_{ATT} = **1.74 V**
- signal ampl = V_{dis} (max)/N_{pe}(max)
- $N_{\text{pe}}(\text{min})=V_{\text{TH}}/(\text{signal ampl})$ => $N_{\text{pe}}(\text{max})/N_{\text{pe}}(\text{min}) = V_{\text{dis}}(\text{max})/V_{\text{TH}}$

Choice of the dynamic range in KLOE

The dynamic range in terms of N_{pe} and the PMT gain G_{PM} can be evaluated using the following constraints for the FEE after the PMT:

- Minimum discriminator threshold V_{TH} = 5 mV
- Preamplifier linearity (within 0.2%) range = $[0, 4.7]$ V => $V_{preamp}(max)$ = 4.7 V
- preamp transimpedance gain G= 250 V/A => $I_{peak}(max)=19$ mA => max signal charge Q(max)=133 pC (triangle approx.); from Q = e N_{pe} G_{PM} => (N_{pe} G_{PM})(max) = 83·10⁷
- $G_{\text{TOT}} = G_{\text{PM}} G_{\text{preamp}}$ with $G_{\text{preamp}} \approx 2.5$
- 12m long cable attenuation: $C_{ATT} = 0.74$
- MAX single pulse amplitude at the discriminator/digitizer input is: V_{dis} (max) = V_{preamp} (max) • 0.5 • C_{ATT} = **1.74 V**
- signal ampl = V_{dis} (max)/N_{pe}(max)
- $N_{\text{pe}}(\text{min})=V_{\text{TH}}/(\text{signal ampl})$ => $N_{\text{pe}}(\text{max})/N_{\text{pe}}(\text{min}) = V_{\text{dis}}(\text{max})/V_{\text{TH}}$

Extending dynamic range in SAND

Preliminary considerations:

there is margin to increase the dynamic range by slightly releasing the stringent requirements for linearity in KLOE (e.g. from 0.2% to 1%) .

In fact, in the specific case of the above picture at the oscilloscope (negligible cable length C_{ATT} = 1) we expect linearity at 0.2% level for V_{dis}(max) = V_{preamp}(max) • 0.5 = **2.35 V**

Assuming to increase $V_{\text{preamp}}(max)$ by 15% while keeping linearity at an acceptable level, e.g. 1% (feasible - see next slide), we get: V_{preamp} (max) = 5.4 V V_{dis} (max) = V_{preamp} (max) • 0.5 = 2.7 V => increase dynamic range

Preamp linearity test (1) using pulse generator

Test set-up

Signal amplitude varied with calibrated attenuators (pulse width \sim 30 ns)

Signal at a modified test input: preamp gain ~1

Preamp linearity test (1): linear and saturation regimes DUC

Linearity test Linear fit $\mathbf{\widehat{\Sigma}}$ $3.$ Q
Q
out **Parameter 0: 2.60 +/- 0.07** ة
< 80 **Parameter 1: 26.64 +/- 0.06** 70 **Chi-squared: 8.91** 60 **Reduced Chi-squared: 0.59** 50 3 40 30 20 2.5 10 0.5 1 1.5 2 2.5 3 V_{in} (V) preamp Non normalized residuals 2 Residuals 0.4 saturation Residuals Ω 0 1.5 −0.2 ~1% linearity −0.4 −0.6 1 −0.8 0.5 1 1.5 2 2.5 3 $\sqrt[3]{V}$ (V) ~0.2% linearity0.5 **Residuals** Residuals Residuals 0.006 0.004 1 2 3 4 5 0.002 V_{in} (V) 0 −0.002 −0.004 Residuals (subtracted system response −0.006 −0.008 0.015 without preamp) -0.01 Residuals Residuals 0.5 1 1.5 2 2.5 3 V_{in} (V) 0.01 0.005 Conclusion: the dynamic range of signals ϵ can be increased in SAND by accepting −0.005 −0.01 linearity at 1% level (instead of 0.2% as in −0.015 0.5 1 1.5 2 2.5 3 KLOE) V_{in} (V)

Choice of the dynamic range

Assuming:

- to increase $V_{\text{preamp}}(max)$ by 15% => $V_{\text{preamp}}(max) = 5.4$ V (linearity from 0.2% to 1%)
- $(N_{pe} G_{PM})$ (max) = 95 \cdot 10⁷
- $V_{\rm dis}(\rm max)$ = $V_{\rm preamp}(\rm max)$ 0.5 $C_{\rm ATT}$ = 2.0 V (12m long cable attenuation: $C_{ATT} = 0.74$)
- to have a very low noise environment as in KLOE => lowering (halving) the minimum discriminator/digitizer threshold to $V_{TH}= 2.5$ mV

• Different dynamic ranges can be implemented changing G_{PM} => <u>cell as a function of the gain $\frac{1}{2}$ and $\frac{1}{2}$ neutron detection efficiency, depending on N_{pe}(min). the PMTs. At *Gtot* = 2*.*1 ⇥ 10⁶ the dynamic range for *Npe* extends from 3 the final choice should be a compromise between an affordable level of events with energy saturated cells, depending on N_{pe} (max), and an acceptable

Preamp linearity test (2) with PMT system test

PMT system test at LNF with

- CAEN LED driver SP5601 (wavelength ∼ 400 nm) with fine tunable LED intensity
- scint. fiber splitter
- two PMTs (for relative QE meas.)

no preamplifier

with preamplifier

Preamp linearity test (2): results (i)

LED driver attenuation scale checked and calibrated with PMT response in linear region

8

A. Di Domenico CSN1 Review of SAND – LNF – 11 July 2024 12 Residuals

14

Preamp linearity test (2): results (ii) => saturation

no preamp **PMT2** with preamp PMT2

preamp recovery time from saturation

A. Di Domenico CSN1 Review of SAND – LNF – 11 July 2024

Preamp linearity test (2): results (iii) => saturation

- The time baseline is distorted during saturation. The recovery time from saturation to linear regime depends on the input signal amplitude.
- The input information is not fully lost during the saturation regime. The "over-linearity" of the integrated charge, or the signal width increase vs the input signal amplitude could be exploited to characterize signals beyond the preamp saturation regime.

Studies and tests for FEE choice in collaboration with CAEN

A. Di Domenico, V. Di Silvestre - INFN-RM1 C. Tintori, C. Maggio, L. Colombini – CAEN, Viareggio

Choice of FEE for SAND/ECAL

Three possible read-out schemes:

CAEN:

collaboration for a commercial (partly customized) solution keeping KLOE energy and time performance

Test setup:

- Start on Ch0 with fixed amplitude. Stop on Ch1 and Ch2 (dual threshold) with variable amplitude (max = 3.85 V). Delay = 13 ns.
- Acquire **ToT** (ToT= Time Over Threshold) and ΔT (ΔT $=$ walk) at different amplitudes (from 0 to 52 dB, 3 dB step)
- Fit points and build **ToT-Walk** and **ToT-Ampl** curves
- Use curves to correct Walk from ToT (replace CFD) Use curves to get Amplitude from ToT (make ADC
- from TDC)

Calibration Curves:

Low threshold: 5mV High threshold: 300mV

A. Di Domenico CSN1 Review of SAND – LNF – 11 July 2024

Time Reconstruction (using ToT-Walk correction)

• Acquired pulses at 6 different amplitudes over a 50 dB dynamic range, the walk causes \sim 2 ns spread on ΔT : 6 separate peaks appear on the histogram

(sample independent from calibration sample)

- ΔT corrected by ToT using calibration data with a $5th$ order polynomial fit of the **ToT-Walk** points taken at lower threshold (5 mV)
- Corrected ΔT histogram presents one single peak:
- **Time resolution ~18 ps** over 50 dB dynamic range

Amplitude Reconstruction (using ToT-Amp correction)

Test setup: $2.$

- **PMT WA5656**
- **PMT WA8792** \bullet
- Signal splitted:
- Pico TDC i.
- ii. Digitizer 14 bit @ 500 MS/s
- Resolution comparison
- TDC: Start on Ch0 with trigger ٠ from LED Driver. Stop on Ch1 and Ch2 (dual threshold) with variable amplitude.
- Digitizer: autotriggering on the Ch₀.

Calibration Curve:

- Acquire **ToT** and ΔT at different amplitudes (from 0 to 39 dB, 3 dB step)
- Low threshold: 10 mV
- High Threshold: 100mV

A. Di Domenico CSN1 Review of SAND – LNF – 11 July 2024

Time Reconstruction (using ToT-Walk correction)

- Acquired pulses at 7 different amplitudes over a 40 dB dynamic range, the walk causes \sim 3-4 ns spread on Δ T: 7 separate peaks appear on the histogram. (sample independent from calibration sample)
- ΔT corrected by ToT using calibration data with a 5th order polynomial fit of the **ToT-Walk** points taken at the lower threshold (10 mV)
- Corrected ΔT histogram presents one single peak:
- **Time Resolution ~ 70 ps**

Time Reconstruction (using ToT-Walk correction)

Time Resolution ~ 60 ps

(ECAL resol. \sim 54ps/ \sqrt{E} + 100 ps)

Amplitude Reconstruction (using ToT-Amp correction)

Low threshold: 10 mV

Amplitude resolution from 3 to 6 % in the low/medium range (well below ECAL resol. \sim 5.7%/ \sqrt{E} in this range – see next slides)

Amplitude Reconstruction (using ToT-Amp correction)

High threshold: 100 mV

Amplitude resolution ~ 3-4 % in the higher range (below ECAL resol. ~ $5.7\%/\sqrt{E}$ – see next slides)

Amplitude reconstruction: comparison with Digitizer

comparison with Ecal resolution

From previous studies on dynamic range:

- V_{dis} (max) = V_{preamp} (max) 0.5 C_{ATT} = 2.0 V
- minimum discriminator threshold possible V_{TH} = 2.5 mV

Amplitude resolution obtained from ToT is compared with the intrinsic calorimeter resolution (assuming 1 mV = 1 p.e. = 1 MeV \Rightarrow 1 V = 1 GeV)

A. Di Domenico **CSN1 Review of SAND – LNF – 11 July 2024**

Choice of FEE for SAND/ECAL

Four possible solutions investigated with CAEN

Digitizer VX2730

Fsampl ~ 500 MS/s => **~ 3.5 Meuro**

Digitizer VX2745B

- F sampl ~ 125 MS/s
- + shaper 64 ch. => **~ 1.6 Meuro**

A5204 - 64 Channel Radioroc unit for FERS-5200 - CAEN - Tools for Discovery 08/07/24, 01:51

DT5203+A5256

PicoTDC + discr. double threshold with ToT => **~ 790 keuro**

PicoTDC + discr. single threshold with ToT (for all signals) $+$ peak sensing ADC with slow shaper – dead time 20 μ s and good resolution (for rarer signals of large amplitude); feasibility study in progress => **~ 520 keuro**

Conclusions (I)

ECAL testing is being to start at LNF in a dedicated area

Studies for the optimization of the working point of the SAND calorimeter read-out electronics have been performed.

The dynamic range and pile-up of the signals have been studied with MC.

PMT preamplifiers have been tested for linearity and are well compatible with needed dynamic range and proposed FEE solutions, with the additional advantage of a lower gain and HV level, beneficial for PMTs lifetime.

The features of preamp saturation could be exploited to partially recover input signal information during saturation regime.

Possible solutions for the FEE that could constitute a good compromise between cost and performance are being investigated in collaboration with CAEN.

In general, any solution must be integrated in the SAND DAQ scheme, with possible synergies with other detector electronics.

PicoTDC tests:

- The time resolution with the signal generator is 18 ps, while for the PMTs signal is 60/70 ps on a 39 dB dynamic range;
- Amplitude resolution from ToT with two thresholds is \sim 3-5 % in the range 20-700 mV (with no specific threshold optimization)
- In this range the resolution from ToT is well below the intrinsic calorimeter resolution σ /E=5.7%/ \sqrt{E}
- Next steps:
	- 1. Optimization of the thresholds for the best perfomance in the whole expected dynamic range (2.5-2000 mV) and in the preamp saturation regime.
	- 2. Improve simulation of the PMT signal and FEE electronics in the official SAND MC simulation; implementation of Walk-ToT correction, ToT amplitude reconstruction, preamp saturation etc..
	- 3. Test of PicoTDC and ToT with KLOE modules at test stand in Frascati.
	- 4. Other solutions based on PicoTDC + amplitude meas. (RADIOROC chip) are being investigated in collaboration with CAEN and appear very promising.