SAND Magnet Power Supply - CSN1 Review

Istituto Nazionale di Fisica Nucleare – Laboratori Nazionali di Frascati

Alessandro Vannozzi - Divisione Acceleratori - Staff Servizio Ingegneria Elettrotecnica

Power Supply System Procurement Status

- The PS is shut down since the last KLOE-2 run (2018).
- A revamping option could save money, time and will keep a solid scheme and functionality of the old KLOE PS
- Quech detector cabinet needs a functional tests
- Control System needs to be updated to recent LabView versions.
- OCEM SpA company provide a quotation for whole PS system except control system and Quench Detector (QD)
- ASG quotation for QD and control system revamping was «not cheaper». ASG will play only the role of supervisor of personnel procured by INFN.
- Several companies with expertise in automation could cover Quench Detector and Control System revamping. Industrial market survey ongoing.

- New Power Units (PU)
- KLOE PS Revamping
- Assembly of all components
- Functional test

AUTOMATION COMPANY

- **Quench Detector**
- Revamping of control system

Power Supply Procurement Status

- The power supply in the last years of operation suffered from aging of some components like:
 - Cooling pipes of the transistors bank and of the free wheeling diodes affected by several water leaks
 - PS control System Based on old LabView version (3.0)
- The PS is shut down since the last KLOE-2 run (2018).
- High current contactors, Busbars and several other components passive componets (i.e. Rdump) could be saved after functional tests

REVAMPING OPTION

Advantages

- Cost and time savings
- More reliability due new components
- Same PS overall dimensions
- Same current terminal position
- Well known functionality

Risks

- Time extention for protacted components functional tests phase.
- Cost increase for substitution of componets who didn't pass the functional tests

Power Supply Procurement Status and Performances

- Survey among several companies with a few years expertise in power converters and who had already provided power supplies with satisfactory performances for INFN.
- Required PS performances in line with the old PS.
- A modular solution with several power unit connected in parallel seems to be the state of the art configuration to find a compromise between reliability and component size.
- Two solutions have been investigated.
 - Power modules provided by CAENELS + Revamping by OCEM SpA
 - 2. Power modules and revamping provided only by OCEM
- OCEM as unique provider was considered the best solution because of a better integration between old and new components and for future support simplicity.
- The PS is currently at OCEM premises.

DC OUTPUT RATINGS	
Power range	30 kW
Current range	3000 A
Maximum output Voltage	10 V
Nominal Ramp Rate	0,6A/s
Output Polarity	Unipolar
STABILITY	
Short term 30 min	+/- 10 ppm*
Long term 8 hours	+/- 10 ppm*
WATER COOLING	
Flow Rate	18-25 I/min
Inlet Water TemperATURE	25-32°C
Current setting resolution	18 Bit
Current readback resolution	16 Bit 16 ppm
AC SUPPLY POWER	
Mains voltage	3x208VAC +/-10% 60Hz (With 400VAC connection for LNF Tests)

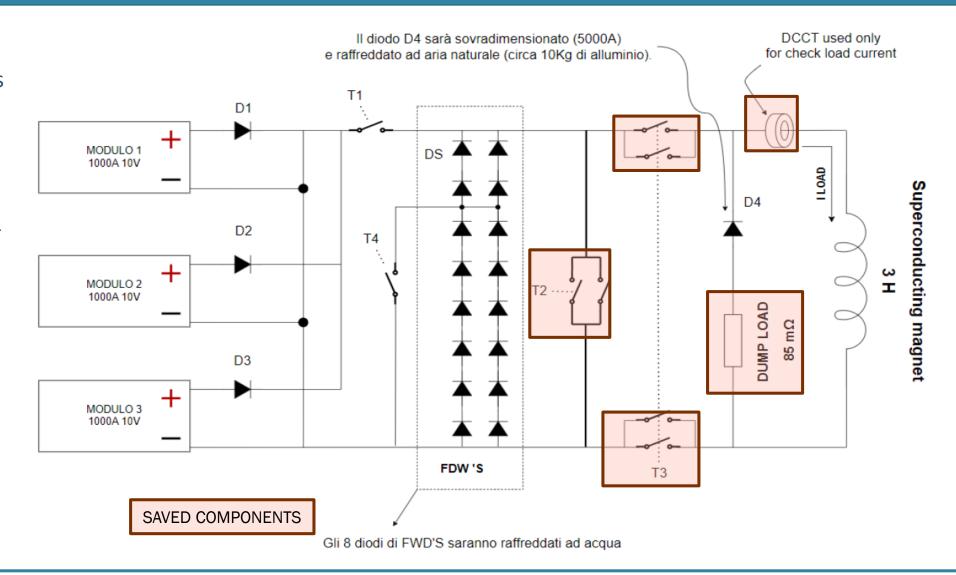
^{*}These are nominal PS parameters, with the 3H magnet load they will be reduced

Power Supply Main Diagram

Magnet Quench

Discharge in 50s, current flows through dump resistor (T3 open)

PS Internal Fault/Grid Fault


Current flows through FWD, discharge in 20 min, V=-7V (T1 open)

FWD Water Cooling Fault

Magnet short circuited with crow bar, discharge in 2,5 hours (Modules OFF)

Regulated Ramp Down

T1 open,T4 cloed by-passing 6FWD→ V=-2V

Power Supply and Ancillaries

- The 3000 A maximum current will be delivered by the parallel of 3 x NGPS 1000 A, 10 V.
- Current regulation with one DCCT per power module. Diode D4 will ensure that the readout of DCCT on the load will be equal to the sum of the three DCCTs
- New PLC for the internal PS control will be installed.
- New external interlock board will be produced according to the old one
- The diodes will be water cooled and equipped with heatsinks.
- The busbars will remain the same of the old PS. The are Al Bars and internally water cooled.

The PS revamping foreseen the supply of several PS **ancillaries**:

- 1. UPS for the auxiliaries (i.e. contacots relè), quench detector, and control power in case of AC power failure. At least 30 minutes back-up time.
- 2. Warm-up power supply: 25A, 230V power supply to bring it up to room temperature once it ceases to be superconducting.
- Control Interfaces (TCP-IP Ethernet)
- 4. All the connections and bars between components including the new high current contactors (T1 and T4)

Phase Procurement

POWER SUPPLY

- Preliminary feasibility study (done)
- Definitive PS design
- Functional test of saved parts (i.e. contactors)
- Eventual procurement of saved parts who won't pass the functional tests
- Assembly
- F.A.T. (probably not on nominal 3H Load)
 - Interlocks
 - Current Ripple and Stability
 - Resolution
 - Auxiliaries test
- Shipment to LNF for Test on real Load

CONTROL SYSTEM & QUENCH DETECTOR

- Finalization of company market survey
- HW and SW inspection
- Functional test of old Quench Detector (QD) and upgrade of old PS control system
- Eventual procurement of saved parts who won't pass the functional tests
- Test of new Control System SW
- Test of QD
- Shipment to LNF for Test on real Load

Extimated Delivery Time and Costs

OCEM Extimated Delivery Time: **10-12 months from order placement**. INFN is finalizing a first order for the definitive PS design. The control system and QD procurement will go in parallel to the PS.

OCEM quote the total cost for the PS procurement :

- 77 k€ + VAT for the PS design study
- **186 K€ NO VAT** for the engineering, manufacturing and tests

TOTAL AMMOUNT 280 k€

A quotation for the revamping of the QD and control system is not still available, probably it will be available before October 2024.

Conclusions

- After several iterations we have a definitive procurement configuration with OCEM as unique provider of the PS.
- The revamping choice will allow to save time and will ensure a full compatibility between magnet and PS and the unique provider will ease all the interactions and the system
- ASG quotation for QD and Control System revamping was not a "turn-key" solution and it was not cheaper.
- A company who with expertise in automation can cover the requirements for QD and Control system. The
 market survey is ongoing.
- INFN is placing a first order to OCEM to speed up the PS design phase. Starting from this signature, the estimated delivery time will be 12 months.
- Revamped control system and QD will be tested at LNF during final test before FNAL shipment

Thank You for the Attention!

