Multiwire Drift Chamber as SAND Tracker (backup solution)

12/07/2024 - CSN1 review

M. Pozzato, A. Ruggeri, G. Sirri

SAND Target Tracker (backup solution)

Objective:

To determine if the SAND physics objectives can be achieved with a tracker that has a reduced number of channels, potentially less complexity, and ensuring the detector remains feasible for a single production site.

We keep

- Gas detector
- Target/Tracker modularity
- Solid Hydrogen concept

We do without

- Transition Radiation Detector

Drift Chamber Study

• Simulation of Basic Cell Configuration

- Implementation in Garfield++
- Simulation of Electric Field
- Optimization for drift properties and signal production

Design and Prototyping

Module layout

- A target layer of CH₂ or C.
- 3 multiwire planes stereo view: -5°, 0°, +5° with respect to the B-field axis.

Prototypes

- Small scale prototype (30x30 cm²) test finished
- Medium scale prototype (120x80 cm²) design completed, procurement in progress

Small Scale Prototype

Aiming at gaining experience in the construction, operation and readout design

- Construction completed:
 - Size: ~30×30 cm²
 - Without target
 - Leftovers of past experiments
 - Not assembled in a clean room
- Instrumented Channels: 12
 - Readout by 2 KLOE preamplifiers
- DAQ: 3 CAEN digitizer

3 planes / stereo view → ghost disentangle

Bending plane: 3 hits (STT is 2) Transversal plane: lower resolution than bending

Python toy model of the prototype:

- fitting algorithms;
- study detector response;
- evaluate the best geometry

Experimental Setup

From Top to Bottom:

- Plastic Scintillator:
 - size: 15x15 cm2;
 - Thickness 1 cm;
 - readout 1 PMT:
 - Hamamatsu R9880
 - Direct coupling
- Plastic Scintillator:
 - size: ~ 30 x30 cm²;
 - Thickness ~2 cm;
 - readout 2 PMTs
 - Fiber Coupling
- Drift Chambers (3 Layers):
 - Readout 12 channels (4 per layer)
 - KLOE pre-amplifiers
 - ~1.5 mV / fC
- Tracking system:
 - Position resolution ~2mm

Wire orientation from data

In the tracker reference system:

• $\theta_3 = -0,131 \pm 0.002$ rad

•
$$\theta_2 = -0.043 \pm 0.001$$
 rad

•
$$\theta_1^- = 0,041 \pm 0.001$$
 rad

Angles between wires:

 $\Delta \theta_{12} = 5,0 \pm 0.1 \circ$ $\Delta \theta_{23} = 4.8 \pm 0.2 \circ$

Nominal is 5°

 $\Delta \theta_{13} = 9.9 \pm 0.2 \circ$

Wire Positions from data

Interdistance:

- Nominal: 1 cm
- Measured 1 cm;
- Error ~ 0.2 cm;

Efficiency – overall «plane»

Likely due to electrons drifting towards mylar plane

Toy- simulation Electric Field Potential Map

Drift speed: preliminary estimation

0.1

0.2

0.3 dc0_tf-pm7_t

Median values and fit just to have a very rough and preliminary estimation of drift speed: $\sim 60 \ \mu m/ns$

New Configuration – Run 2 MC toy simulation

Electrostatic Potential Configuration (log scale)

- Sense wire: +1600 V
- Field wire: -100 V
- Mylar planes: grounded

Try to get a more «cylindrical» field configuration

Electric Field Magnitude (log scale)

Example – single channel data

From KLOE, distribution modelled as:

$$T_{drift} + T_0 = a + b \frac{e^{-d(t-T_1)}}{1 + e^{-(t-T_0)/c}}$$

Efficiency map - preliminary

Still visible the region with lower efficiency.

Cell response simulation

- Garfield++ model for studying drift properties and signal production
- Full track simulation in Garfield++ is too slow
 → Signal maps
- Particle signal by combining mapped electron signals.

30x30 prototype MC model

Comparing the prototype data to MC cosmics response simulation

Comparing charge distributions

Extracting expected D-T curve

Middle scale prototype – ~80x120 cm²

Overall geometry

- ~240 drift planes
- Number of channels depends on the cell shape

2 x 1 cm² cells

- \sim 3.6x10⁴ channels
- ~ 7.2×10^4 wires

1.4 x 1.2 cm² cells

- \sim 5.2x10⁴ channels
- $\sim 10.4 \times 10^4$ wires

Prototype Drift-Ch 1200x800

	2024					
	JULY	AUGUST	SEPTEMBER	OCTOBER	NOVEMBER	DECEMBER
3D MODEL+2D DRAFTING						
ORDER ISSUE						
COSTRUCTIONS						
Stesalit construction Euromec						
Aluminum parts construction Euromec						
Other component construction mechanical workshop INFN BO						
Delivery of other componentes (springs, gas connectors,ecc)						
ASSEMBLY (workshop INFN BO)						
Mechanical						
Wire positioning+welding						
Positioning Mylar sheets						
Other						
ACCEPTANCE TESTS						

Readout – TIGER ASIC

- UMC 110nm technology
- 64 channels per ASIC (2 ASIC per FEB)
- Time and charge measurement
- One demo board is now in Bologna

Conclusions

- Drift Chamber small scale prototype:
 - Working and taking data with different field configurations;
 - Good reconstruction of :
 - Wire orientations;
 - Wire Z positions;
 - Efficiency not uniform on the whole cell:
 - Probably due to electrons drifting to the mylar plane.
 - Trying to investigate more «central» field configuration
- Middle scale prototype:
 - Mechanical design should be finalized;
 - Garfield Simulation done, optimization in progress;
 - Front-end: TIGER ASIC under investigation (one demo board is under test in Bologna).