

DALLAVALSAAS

The New ASIC for GRAIN

ASIC Specs, Architecture Validation and Project Timeline

INFN-LNF – Project Review July 11th, 2024

Stefano Durando

Sofia Blua, Valerio Pagliarino, Angelo Rivetti

Parameter	Value					
SiPM Size	2 x 2 mm ² (140 pF) 3 x 3 mm ² (500 pF)					
# Channels/ASIC	1024					
Operating Temperatures	300 K – 77 K					
<power consumption=""></power>	5 W / cm² ◊					
Duty Cycle	On ≥ 9.6 µs (50 µs) Off ^{◊◊} < 0.1 s					
Measurements:	Q – ToA - ToT					
Integrator Dynamic Range	> 100 PE					
RMS _{ToA} (first PE)	100 ÷ 150 ps /1PE					
RMS _{ToT}	≈ ns					
Threshold	0.5 x 1PE					
SNR	30					

 $^{\diamond}$ Set by the cryogenic condition, still under study. $^{\diamond\diamond}$ Interspill = 1.2 ms - 9.6 µs

Stefano Durando - 11/07/2024 - INFN-LNF

ALCOR Parent

- **Parent ASIC:** R&D with an external company
 - UMC 110 nm
 - 1024 Channels, reading out silicon pixels
 - The ASIC is bump-bonded to the pixels
 - Key IP blocks like the TAC based TDC (30 ps)
 - Basis for the following prototypes

• ALCOR v1

A Low power Chip for Optical sensors Readout

2 ALCOR chips wire bonded on the dedicated board Courtesy of Fabio Cossio (INFN) ALCOR's Parent: 1024 pixel channels were bumpbonded to the silicon pixels. The ASIC was wirebonded on the board

SiPM Readout ASICs at INFN

 ALCOR v1: Mixed-signal ASIC for SiPM readout, Darkside framework (2019) (A Low power Chip for Optical sensors Readout)

(PhD Thesis, W. Cheng, Polito: <u>https://iris.polito.it/handle/11583/2842529</u>)

- UMC 110 nm
- 32 channels, 4.95 x 3.78 mm²
- 440 x 440 μ m² pixel channel
- Single-photon time tagging and ToT , compatible with both signal polarities
- LVDS digital output, 320 MHz DDR Tx links
- ≈12 mW/channel
- Tested at room temperature and in liquid Nitrogen

ALCOR v2.0/.1 and v3 ASICs for the dRICH EIC Detector at BNL (NY, USA)

(XII Front-End Workshop, Torino, link : https://agenda.infn.it/event/37033/contributions/228026/)

- Scaled to 64 channels
- V2.0: 2023 MPW and engineering run, Debugged and optimized for the EIC detector
- V2.1: 2024 (Jan) Engineerig run, currently under test
- V3 : Final version, Silicon available in 2025

ALCOR v1 Top Cell Layout (F.Cossio)

ALCOR Pixel Scheme

• 2 (Anode/Cathode) Regulated Common Gates (RCGs) Input stage

- 2 Independent Trans-Impedance Amplifiers (TIAs)
- 2 Leading Edge Discriminators (LE Discs)
- 4 TDCs = 4 x (TAC + Wilkinson ADC)
- Control Logic: pixel config, TDCs operation and data transmission

440 µm

ALCOR v1 pixel

Dominated by the analog blocks (capacitors)

GRAIN ASIC Pixel Scheme

Based on the ALCOR scheme, with minimum changes:

- Regulated Common Gate input stage
- Time branch:
 - TIA + LE Discriminators
 - 2 Time to Analog Converters (TACs)
- Charge branch
 - 2 Integrators
- 4 Analog to Digital Converters with speed increased up to 4/8 times
- Control: pixel config, ADCs/Integrators/TACs operation and data transmission

GRAIN ASIC pixel

Architecture Validation

- Ongoing validation of the architecture by the collaboration for GRAIN detector's physics with:
 - Coded aperture masks
 - Lenses
- **Python software** designed in Torino by <u>Sofia Blua</u> and <u>Valerio Pagliarino</u>
 - Inputs: time domain reconstruction of a single spill SiPM event
 - Behavioural model: Ideal description of the pixel electronics' response
 - Output: numpy array (ASIC-like output)
- First results suggest the proposed architecture meets the requirements

Courtesy of Sofia Blua and Valerio Pagliarino

Architecture Validation

- Ongoing validation of the architecture by the collaboration for GRAIN detector's physics with:
 - Coded aperture masks
 - Lenses
- **Python software** designed in Torino by <u>Sofia Blua</u> and <u>Valerio Pagliarino</u>
 - Inputs: time domain reconstruction of a single spill SiPM event
 - Behavioural model: Ideal description of the pixel electronics' response
 - Output: numpy array (ASIC-like output)
- First results suggest the proposed architecture meets the requirements

Courtesy of Sofia Blua and Valerio Pagliarino

GRAIN ASIC Floorplan

- ALCOR: $32 \rightarrow$ GRAIN: 1024 channels = 32×32 pixels matrix
- Wafer reticle size : 20.340 mm x 31.840 mm
 - Safe circuit size < 20 mm x 20 mm
 - Hp: pixel channel pitch ≈ 500 μm
 → 32 x 500 μm = 16 mm + EoC, Biasing and PADFrame
- Advanced packaging techniques:
 - ASIC bump bonded to interposer for SiPMs and PCB board connection
 - On pixel PAD for SiPM
 - Inter-column supply and ground PADs to reduce IR drops
- Pin out under discussion:
 - Power Domains
 - 3 Analog + 3 Digital
 - Differential:
 - 1 Clk + 3 SPI
 - + 1 trigger +2 Data
 - Single ended
 - 1 Reset + 1 Global_EN
 + 1 Low Power

GRAIN ASIC

Flip-Chip BGA package

- The ASIC is bump-bonded to an interposer connected to the board with package balls
 - On-pixel PAD for SiPM
 - Inter-column supply and ground PADs for reduced IR drops
- Similar approach is followed for ALCOR v3 implementation for EIC

Flip-chip BGA working principle Hsu, Hsin-Wu & Chen, Meng-Ling & Chen, Hung-Ming & Li, Hung-Chun & Chen, Shi-Hao. (2012). On effective flip-chip routing via pseudo single redistribution layer. 1597-1602.

10.1109/DATE.2012.6176727.

10 Stefano Durando - 11/07/2024 – INFN-LNF

Timeline

2024				2025			2026			2027				
Jan-Feb-Mar	Apr-May-June	Jul-Aug-Sept	Oct-Nov-Dec	Jan-Feb-Mar	Apr-May-June	Jul-Aug-Sept	Oct-Nov-Dec	Jan-Feb-Mar	Apr-May-June	Jul-Aug-Sept	Oct-Nov-Dec Jan-Feb-Mar	Apr-May-June	Jul-Aug-Sept	Oct-Nov-Dec
Specs/Para	m Definition													
		Design												
		Schematic Level to Layout					ifications	Production						
		Channel	Readout and	d Integration	Layout			Chip Prod	Packaging	Tes	ts and Validation			
									Final Desig	n				
												Produ	uction	
		I											Chip Prod	Packaging
		tO												

- The new ASIC for GRAIN:
 - Leveraging expertise from previous and ongoing developments
 - Implementation of silicon-prooved IP blocks shorten the development time
- 2 Engineering runs:
 - A 1024 demonstrator tape-out scheduled for the end of December 2025
 - Last submission with bug fixes in October 2026
- Ongoing and future activities:
 - Architecture validation
 - New blocks and digital control design, floorplan and pin-out
 - Test board and packaging under study, production once the PADframe will be freezed (Dec 2025)

RD53 ASIC Scheme, a 10 years collaboration... Source: L. Pacher, (2023) "RD53 Pixel Readout Chips in 65 nm CMOS for ATLAS and CMS Phase2 upgrades", XII Front-End Workshop, Torino. RD53: http://rd53.web.cern.ch/

DAUAVARAAA

A