Optics and reconstruction with lenses

Alessio Caminata – Alice Campani for the Grain WG CSN1 Review of SAND July 11th, 2024

Lens-based optical readout for GRAIN

- Purpose of optical detectors:
 - Spatial reconstruction of the events
 - Time reference for triggering and selecting beam interactions against background
 - Calorimetric measurement of the energy deposited in GRAIN
- Lens-based optical readout an innovative readout system:
 - Optical imaging cameras taking pictures of neutrino interactions
 - VUV light detection and low materials light transmittance in VUV

Materials and design

- Materials
 - Fused silica HPFS 8655 need of xenon doping of Argon
 - Alternative option: usage of MgF2 no need for xenon doping
- Design
 - Type A: Two plane-convex lenses \rightarrow gas between the two lenses
 - Type B: Single bi-convex lens \rightarrow gas between the lens and the sensor
- SiPMs:
 - Matrix with 32x32 SiPMs with different sizes:
 - (1mm, 2mm -> baseline, 3mm)

Lens-based configuration

- FoV: cone of semi-aperture 18°
- Track distinguishable distance > 40 cm from camera
- Distribution to ensure every point is visible by at least 1 camera
- 53 cameras: 16 on each side, 14 in the top, 7 in the bottom
- Matrices: 32x32
- SiPM dimension: 2x2 mm²

Example of the simulation results

- Geant4-based simulation framework implemented
- Capability to simulate both single interactions and spills

1 GeV muon parallel to the lens central plane

Grain performance reco and track containment

Reco True	Contained	Not contained
Not contained	$247~(\sim 3\%)$	8269 (~ 97%)
Contained	$3301~(\sim 74\%)$	1186 (~ 26%)

15k ν_{μ} CC sample and 5 cm FV cut from the cryostat walls GRAIN+STT info used here

GRAIN performance -track reconstruction

- Track reconstruction in 2 steps:
- 2D analysis of the camera images and fit of the tracks
- 3D matching of the different tracks based on projective geometry or voxelization

• Vertex detection performance

• Angular resolution, energy resolution

More details <u>here</u>

Projective geometry

• Algorithm for track reconstruction under development by Lecce group

- Single track: tested
- Test with 2 tracks from neutrino interaction: in progress

 $\bullet\,$ Analysis of intercepts of the M reconstructions

ASIC requirements for GRAIN

- The simulation output is used for studying a dedicated ASIC architectural design
- Basic framework considerations
- A dedicated requirements document has been released

Document with ASIC requirements

С	ontents
1	Introduction
2	Expected interactions in GRAIN
	2.1 Detector configurations under evaluation
	2.1.1 Optical sytem
	2.1.2 SiPM matrices
3	ASIC Requirements
	3.1 Requirements imposed by Photon distribution
	3.2 General requirements
	3.3 Input/Output requirements 1
	3.3.1 Data communication and slow control
	3.3.2 Synchronization
	3.3.3 Test pulse
	3.4 Requirements imposed by Cryogenics
	3.5 Summary
4	GRAIN framework - preliminary layout
	4.1 Introduction
	4.2 GRAIN readout scheme
	4.2.1 Interface Board
	4.2.2 Flanges
	4.2.3 Distribution Board
	4.2.4 Camera Board
	4.3 Timing system and clock distribution
	4.3.1 Jitter requirements for the GRAIN electronics
	4.3.2 Clock distribution
	4.3.3 Time synchronization
	4.3.4 Data line

LArRI:

A new setup to measure Liquid Argon Refractive Index

- LAr: most widely used scintillator, excellent properties at low cost
- Xe-doping shifts s. peak to $\lambda_s = 175$ nm: increased uniformity, simplified detection
- Main goal: direct measurement of LAr
 <u>refractive index</u> crucial for imaging systems
- Further goals:

10

- $_{\odot}~$ Characterize optical properties of LAr
 - Measure dispersion relation
 - Measure the attenuation length
- Extend to other liquified noble gases

- A diffraction grating is used and when immersed in liquid the diffraction peaks position depends on $\lambda_L = \lambda_0/n$
- We need a light source:
 - \circ Peak @ λ_s , coherent and monochromatic

Key idea: compare the diffraction patterns produced by light in LAr and vacuum

LArRI: setup and measurement strategy

Warm part: low-pressure mercury lamp (@184.9 nm) + optical setup

Cold part: chamber & cryostat + diffraction grating + moving system to scan on the vertical axis (more compact) + light detectors (SiPMs)

Analysis strategy: simultaneous fit of the position of the $M_{1,2}$ diffraction peaks in vacuum and liquid to measure n(LAr)

LArRI: results and next steps

- Consistency check measurements:
 - Same medium (vacuum), 2 wavelengths
 - Scans @402.9 nm vs scans @253.7 nm
 - \circ Results shown as deviations x 10³

- Preliminary results in liquid argon:
 - \circ Refractive index @402.9 nm nLAr = 1.24(1)
 - Refractive index @253.7 nm nLAr = 1.24(1)
 - Refractive index @184.9 nm nLAr = 1.29(5)
- Conclusions:
 - System fully operational in vacuum and liquid
 - Analysis strategy validated
- Steps moving forward:
 - Evaluation of the systematics
 - Improve measurements @185 nm
 - $_{\odot}~$ Take runs in LAr to achieve the target

