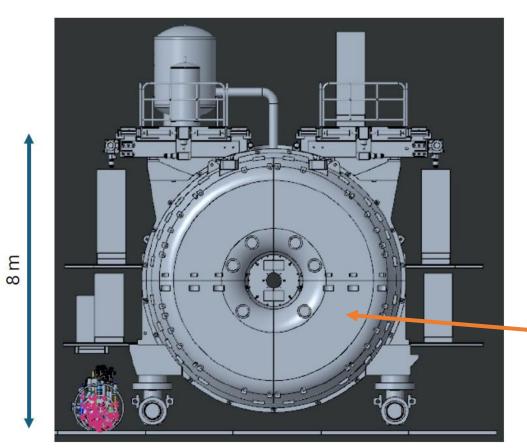
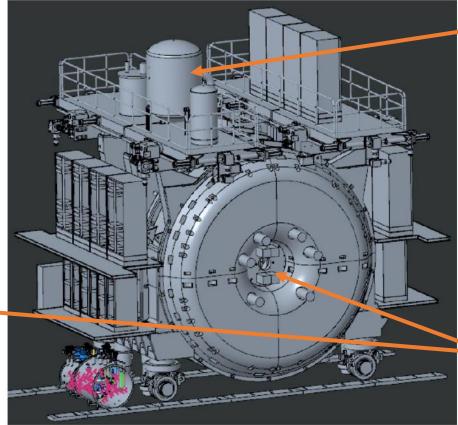

CRYOGENICS FOR GRAIN

CSN1 Review of SAND July 11th-12th 2024


R.Pengo, G.Piazza & the cryogenic service of LNL


FNAL final destination layout

FNAL final destination layout

Proximity cryogenics of GRAIN (preliminary Layout)

KLOE Cryostat and Magnet

FORWARD

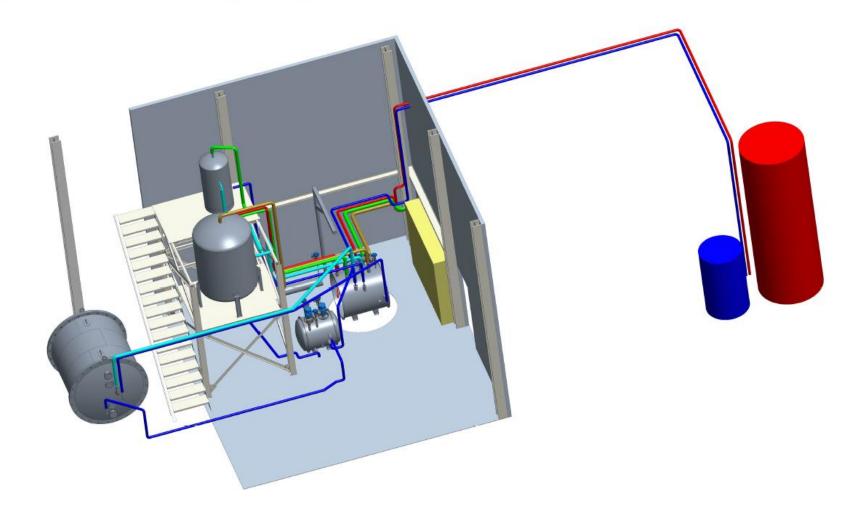
It has been agreed with INFN-LNL to construct a <u>dedicated test facility</u> for the experiment, prior to the installation at FNAL:

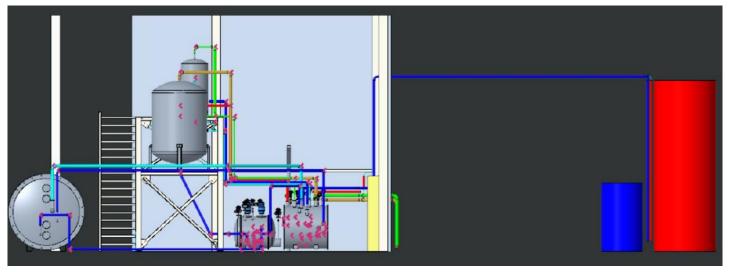
- To test the final cryogenic system (with a SS vacuum tank for the cryostat)
- To test the detectors in the final configuration

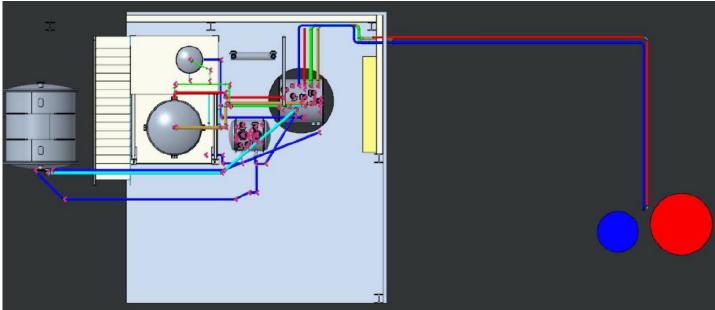
The site of LNL (Laboratori Nazionali di Legnaro) has been selected since <u>a minor</u> <u>refurbishing</u> for the scope is needed, taking advantage of the existing cryogenic laboratory formerly used for the test of the 22 cryostats of the local superconducting accelerator, since long in operation there.

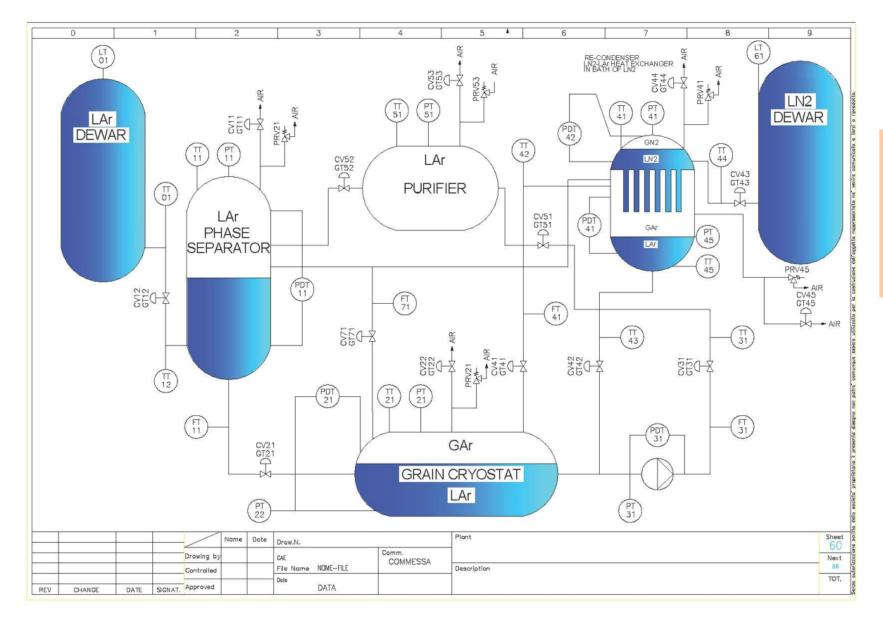
The design of the test facility will follow the requirement that the maximum of the components will be installed at FNAL with the minimum adaptation, in order to achieve:

- highest reliability of the operation at FNAL
- saving costs


Refurbishment of LNL lab


- Existing LN2 tank outside
- Four new transfer lines (vacuum insulated) are being installed:
 - IN/OUT for LN2/GN2
 - IN/OUT for LAr/GAr



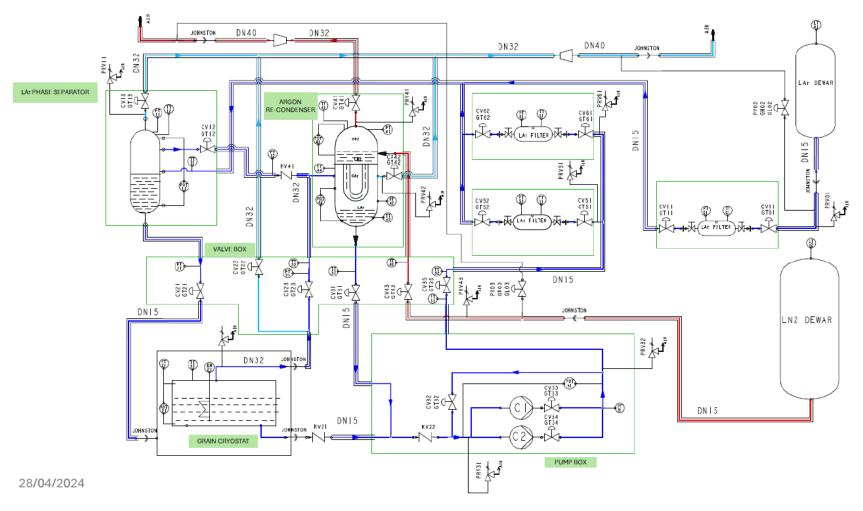

LNL preliminary layout

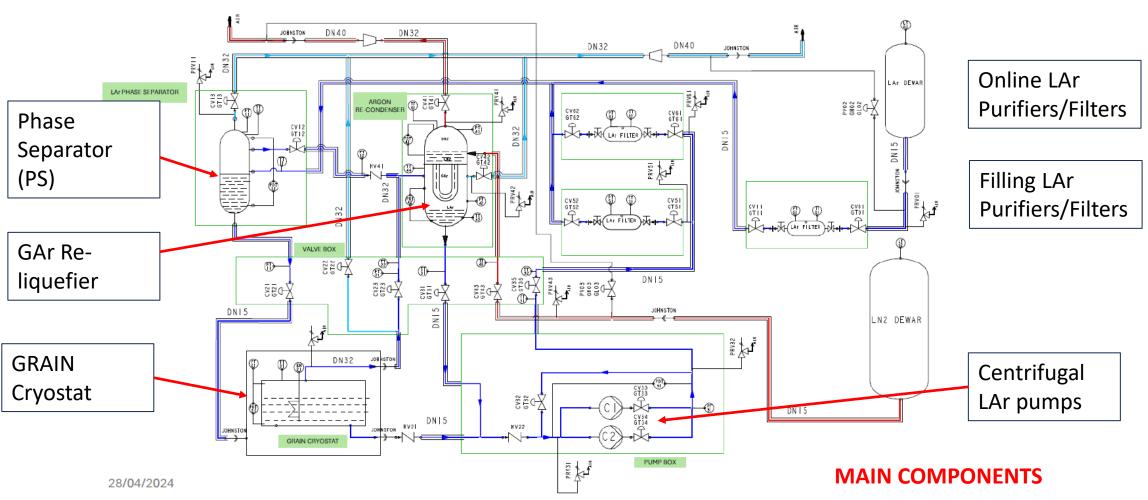
- All final (FNAL)
 cryogenic transfer
 lines <u>are vacuum</u>
 <u>insulated and welded</u>
- The four fixed cryogenic transfer lines at LNL have Johnston removable connections.
- The height of the PS, which determine the sub-cooling temperature margin, will be 3.5 m at LNL and 8 m at FNAL

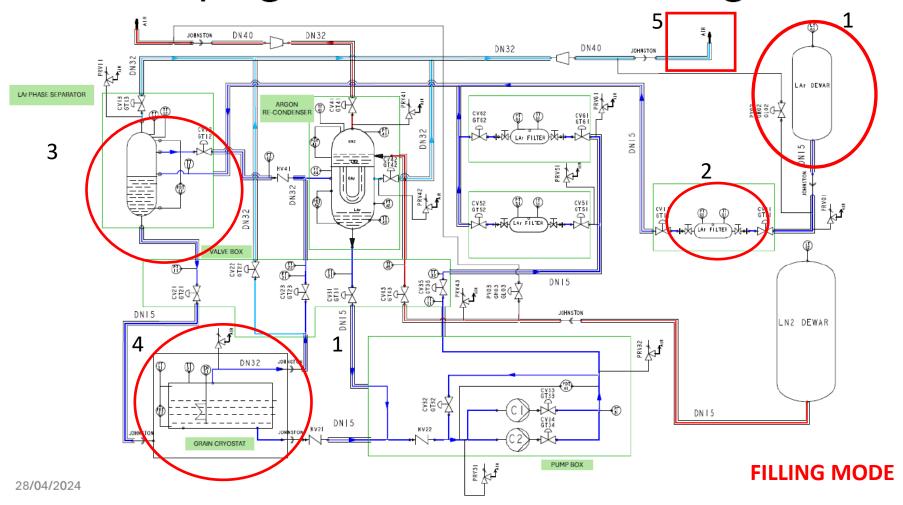
SIMPLIFIED P&ID

TT: Temperature Transmitter

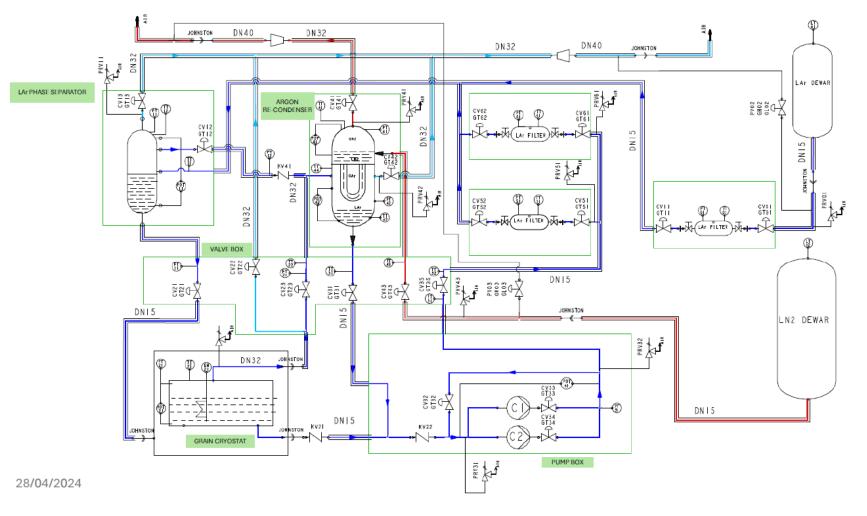
PT: Pressure Transmitter


PDT: Differential Pressure


Transmitter


FT: Mass Flow Transmitter

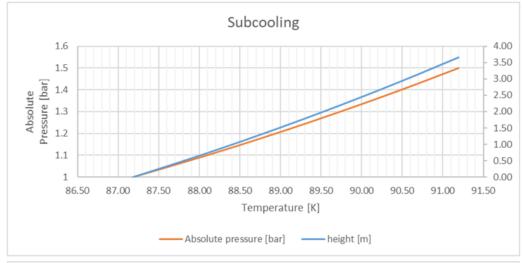
CV: Control Vave PV: Valve ON/OFF


PRV: Pressure Relief Valve

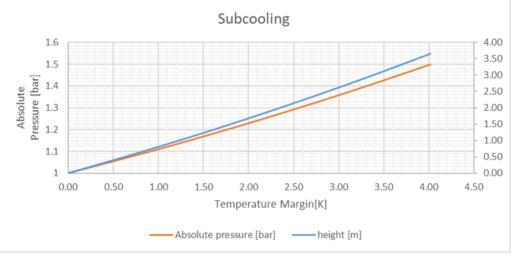
Normal operation

- 1) <u>Centrifugal</u>
 <u>pump</u> is circulating
 the LAr:
- through the purifier
- to the phase separator (PS)
- 2) The GAr boil-off of both the cryostat and of the PS enter the <u>re-liquefier</u>, where it is liquefied with the <u>aid of LN2</u> at the pressure corresponding to LAr (ca. 2.8 bar)

Cryogenic specifications


- Recirculation of LAr will be provided by *centrifugal pumps*: one at LNL, two at FNAL (one redundant)
- Maximum heat load 1500 Watt (800 liters LN2 for 24 hours of operation)
- Mass flow of LAr max. 20 g/s (one GRAIN volume in 20-24 hours)
- Maximum head (Delta P) necessary: 0.5 bar (3.5 m) at LNL and 1.1 bar (8 m) at FNAL
- Two filters needed (copper spheres): one dismountable/replaceable for regeneration
- Control system according to UNICOS CERN (WINCC OA) (see scheme)

Cryogenic specifications (status)


- Recirculation will be provided by centrifugal pumps (one at LNL/two at FNAL, one redundant)
- Maximum heat load 1500 Watt (800 liters LN2 for 24 hours of operation)=> To Be Confirmed
- Mass flow of LAr max. 20 g/s (one GRAIN volume in 20-24 hours)
- Maximum head (Delta P) necessary: 0.5 bar (3.5 m) at LNL and 1.1 bar (8 m) at FNAL=> contacts with Barber&Nichols ongoing
- Two filters needed (copper spheres): one dismountable/replaceable for regeneration => C. Montanari
- Control system according to UNICOS CERN (WINCC OA), the same for LNL and
 FNAL =>(see detailed scheme prepared by LNL cryogenic service, order placed)

How the sub-cooling of LAr works

Temperatumargin [K]		Hydrostat	tic height		
margin [it]				Liquid	Vapor
		Temperati	Pressure	Density	Density
margin[K]	(m)	(K)	(bar)	(kg/m^3)	(kg/m^3)
0.00	0.00	87.18	1	1396.2	5.7043
0.91	0.73	88.09	1.1	1390.5	6.2253
1.76	1.46	88.94	1.2	1385.3	6.7426
2.55	2.19	89.73	1.3	1380.3	7.2566
3.31	2.92	90.48	1.4	1375.6	7.7678
4.02	3.65	91.19	1.5	1371.1	8.2763

In the table above and in graphs on the right it is shown the obtainable temperature margin by means of the hydrostatic height of the LAr. The subcooling is necessary in order to reduce/avoid the production of Ar bubbles coming from the electronics immersed in LAr.

R. Pengo

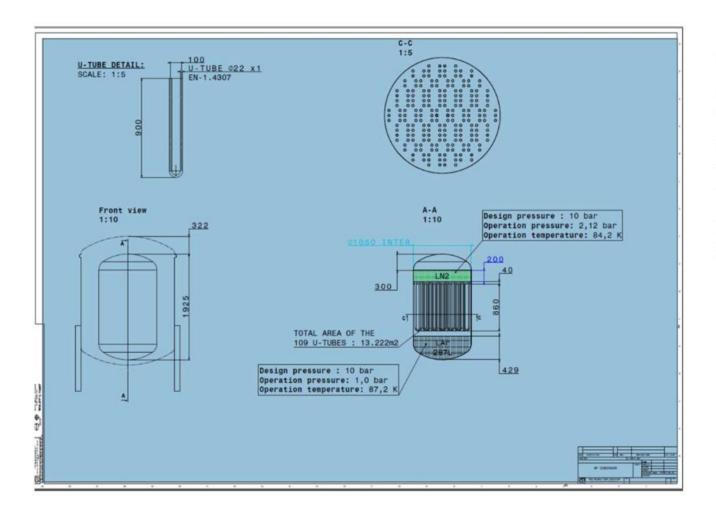
Example of calculations:

Given:

- 1 mc of Lar at 87 K
 - (density ca. 1400 kg/mc,
 - density at 293 K is 1.64 kg/mc at 1 bar,
 - density at 293 bar is 347 kg/mc at 200 bar
- 2000 W total dissipation

Pump:

- Mass flow is 2000/161= 12.4 g/s
- Head for 5 m is 0.69 bar or 68670 Pa
- Pump dissipation for 5 m head (0.0124 x 68670)/1400 = 0.6 W
- If efficiency is 30% the dissipation is 2 W, plus static heat load from cryostat

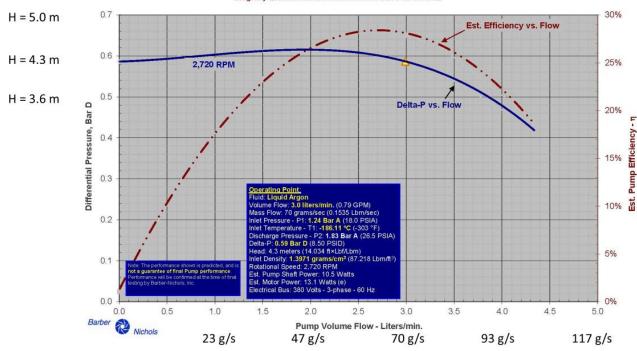

Recovery as GAr:

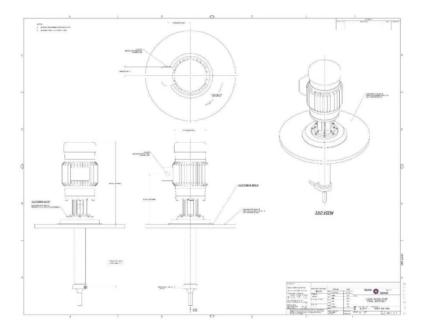
- Volume in gas at 200 bar is 1400/347= 4 mc at 200 bar
- If a cylinder is 50 liter 4mc/0.05 = 80 cylinders
- I packet is 12 cylinders so 80/12= ca. 7 packets

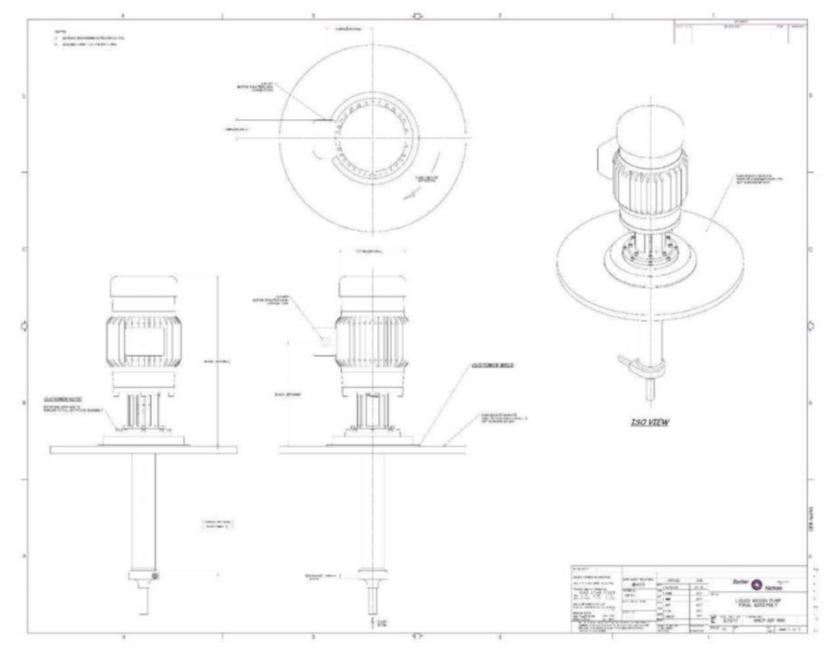
Summary of the design status of the cryogenic components

- <u>Inner vessel</u> (SS): designed completed
- Vacuum tank for the test facility (SS): designed completed (see G.Piazza talk)
- <u>Vacuum tank</u> for FNAL in Carbon fiber reinforced polymers (CFRP): design advanced
- Centrifugal pumps for LNL (head 3.5 m): design available (B&N)
- <u>Centrifugal pumps</u> for FNAL (head 8 m): new design to be agreed with B&N
- Phase separator: design available
- Re-condenser: design available
- <u>Filters/purifiers</u>: specifications available
- Control system: design ready and order placed for hardware
- <u>Functional logics</u>: to be prepared (UNICOS)

Re-condenser




This U-tube heat exchanger is dimensioned for 1500 W.
The boil off is produced by the static heat load, detectors heat load and feedthroughs.

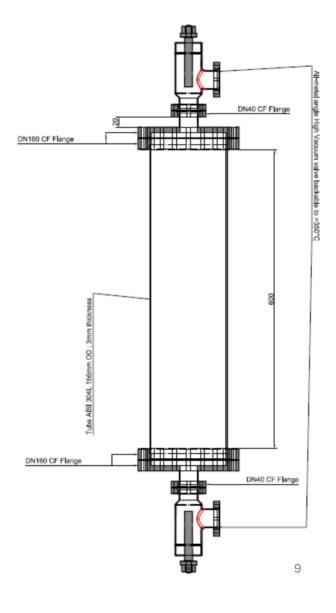

The GAr formed has to be re-condensed and sent for gravity to the recirculation pump

Estimated Partial Emission Pump Performance Barber-Nichols Inc. - Model BNCP-32F-000

Prepared for INFN
Budgetary Quotation Number: 16XXXX Rev. 0 Dated 25 Oct. 2022

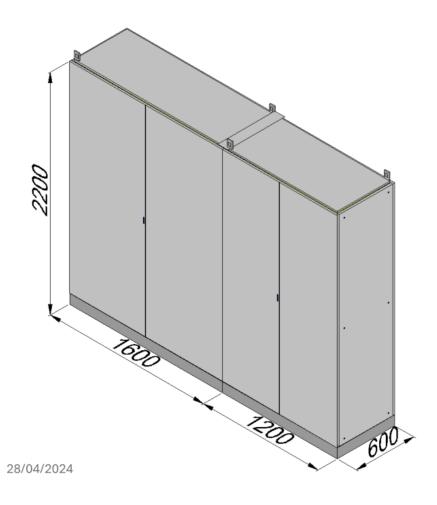
11/07/2024

R.Pengo, G.Piazza & the cryogenic service of LNL


Purification filters

Made of molecular sieve (sintered disk) and small spheres of Al2O3 coated with Cu

One purifier for the filling and two in parallel for the recirculation

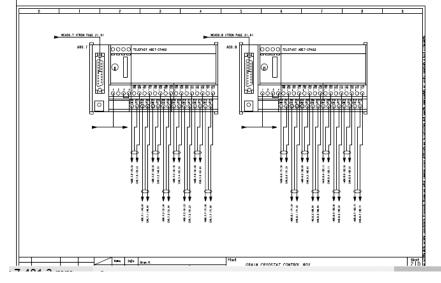

The filters have not been sized and designed yet.

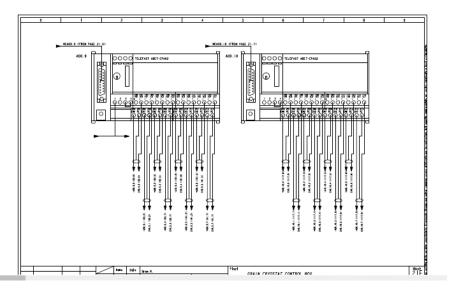
In order to dismount and regenerate the filters there will be placed a CF flange and a manual shut-off valve on both sides; in this way the filter can be removed and installed, preventing air from entering.

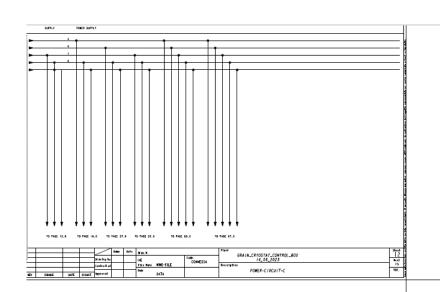
28/04/2024

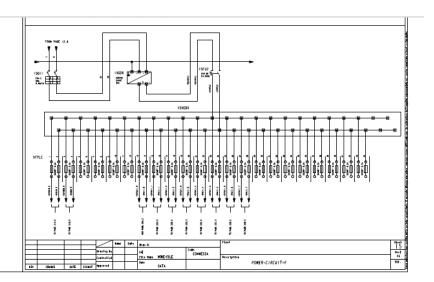
Electric control panel

The project has been completed with the help of LNL cryogenic division staff, and all the material has been delivered to LNL.

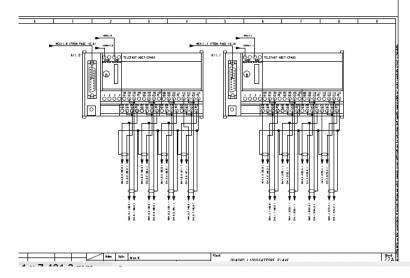

Analog Input: 52 Analog Output: 21 Digital Input: 14 Digital Output: 9

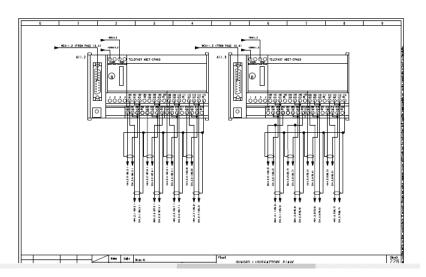

Plus some spares

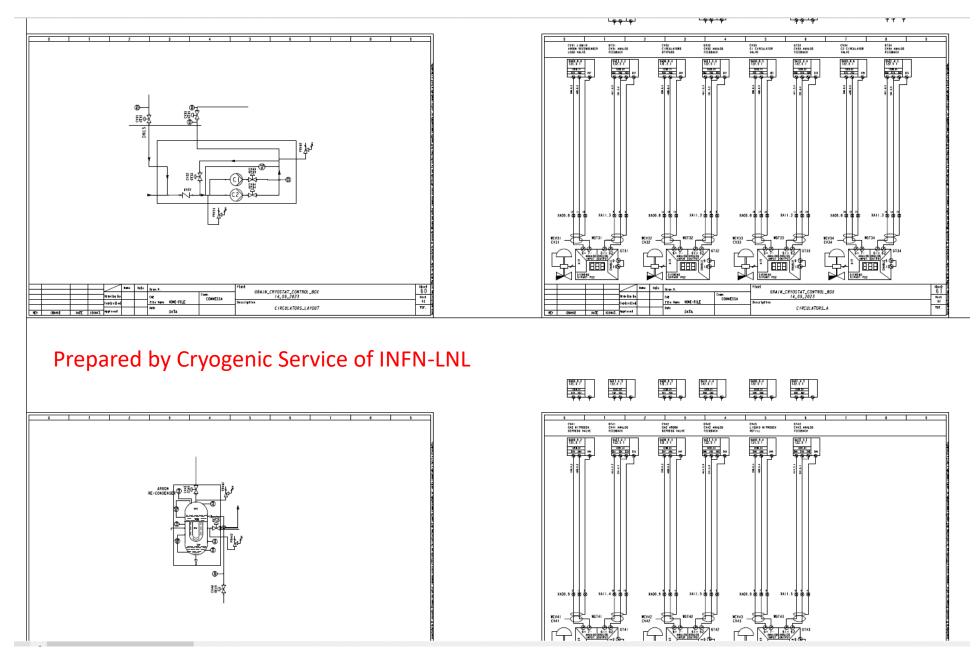

14

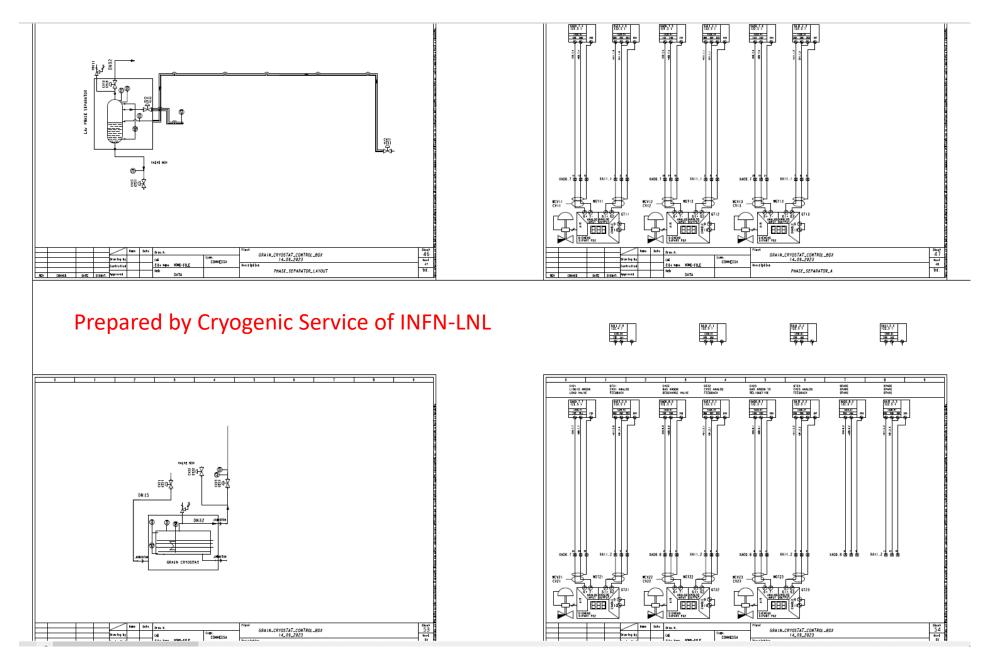

		LIS	STA	F0	GLI V	INDEX			LI	STA	FOGL	.1 \	NDEX				
oglio heet	Descrizione Description			Revi	sieFogi sia Shee		Fogl	lio Descrizione et Description		lose \ 21314151		Foglio	Descrizione R Description		one \		
1	COVER	9112	7	3 0 7 0	2 IF	TELEFAST RACK O SPARE LAYOUT	11 1	COVER	- 1"1"	2 3 4 3	0 / 0 3	21F	TELEFAST RACK O SPARE LAYOUT	1	111	4	4
2	CE PLATE	\rightarrow	ш	+++	22	PLC RACK I LAYOUT	2	CE PLATE	-	++++	+++	22	PLC RACK I LAYOUT	ш	H	+	•
3	SHEETS INDEX	-	ш	##	22A	TELEFAST RACK AL I.O/I.I LAYOUT	3	SHEETS INDEX	-H	ш	+++	22A	TELEFAST RACK Al .0/ . LAYOUT	ш	++	1	
4	SHEETS INDEX	$\neg \sqcap$	ш	+++	228	TELEFAST RACK A 1.2/1.3 LAYOUT	4	SHEETS INDEX	-HH	+++	+++	225	TELEFAST RACK A 1.2/1.3 LAYOUT	ш	HI	1	
5	SHEETS INDEX	-	ш	+++	22C	TELEFAST RACK AI 1.4/1.5 LAYOUT	5	SHEETS INDEX	-	+++	+++	22C	TELEFAST RACK AI 4/1.5 LAYOUT	ш	++	Ħ	
6	SHEETS INDEX	-	ш	+++	220	TELEFAST RACK AL 1.6/1.7 LAYOUT	6	SHEETS INDEX	-H	ш	+++	220	TELEFAST RACK A 6/1.7 LAYOUT	ш	++	1	
7		-	Ш	111	22E	TELEFAST RACK A 1.8/ .9 LAYOUT	7		-	+++	+++	22E	TELEFAST RACK Al 8/1.9 LAYOUT	ш	HI	1	
8			Ш	$^{-111}$	22F	TELEFAST RACK A LAYOUT	8			$\Pi\Pi$	+++	22F	TELEFAST RACK A . 0/ . LAYOUT	Ш	\mathbf{H}	1	
9		$\dashv \vdash$	ш	+++	23	 	9		-111	ПП	+++	23		Ш	Π	1	
10	POWER CIRCUIT A	$\neg \sqcap$	Ш	TTT	24		10	POWER CIRCUIT A		ПП	Π	24		Ш	\mathbf{H}	1	
П	POWER CIRCUIT B	-	ш	+++	25			POWER CIRCUIT B	$-\Pi\Pi$	++++	+++	25		ш	\mathbf{H}	1	
12	POWER CIRCUIT C	$\neg \sqcap$	ш	+++	26		12	POWER CIRCUIT C	-HH	+++	+++	26		ш	HI	1	
13	POWER CIRCUIT D		Ш	TTT	27		13	POWER CIRCUIT D		$\Pi\Pi\Pi$	+++	27		Ш	\mathbf{H}	1	
14	POWER CIRCUIT E	\neg	Ш	+++	28		14	POWER CIRCUIT E			+++	28		Ш	\mathbf{H}	1	
15	POWER CIRCUIT F	$\neg \sqcap$	Ш	Ш	29	WATER AND COMPRESSED AIR CONTROL CIRCUIT	15	POWER CIRCUIT F		ПП		29	WATER AND COMPRESSED AIR CONTROL CIR	TIU	Ш	٦	Г
16	POWER CIRCUIT G	-	ш	111	30	COLDBOX PUMPING VACUUM SYSTEM LAYOUT	16	POWER CIRCUIT G	-H	+++	+++	30	COLDBOX PUMPING VACUUM SYSTEM LAYOUT	Ш	HI	Τ	t
17	POWER CIRCUIT H	\neg	ш	111	31	PUMPING VACUUM CIRCUIT A	17	POWER CIRCUIT H			+++	31	PUMPING VACUUM CIRCUIT A	ш	\mathbf{H}	Ī	t
18	POWER CIRCUIT I	$\neg \sqcap$	Ш	\top	32	PUMPING VACUUM CIRCUIT B	18	POWER CIRCUIT I		$\Pi\Pi$	$\Pi\Pi$	32	PUMPING VACUUM CIRCUIT B	Ш	\mathbf{H}	1	
19			Ш	++	33	PUMPING VACUUM CIRCUIT C	19				+++	33	PUMPING VACUUM CIRCUIT C	Ш	\mathbf{H}	1	
20	PLC ALIMENTATION CIRCUIT	$\neg \sqcap$	Ш	тт	34	PUMPING VACUUM CIRCUIT D	20	PLC ALIMENTATION CIRCUIT	$-\Pi$	$\Box\Box$		34	PUMPING VACUUM CIRCUIT D	Ш	Ш	1	
21	PLC RACK 0 LAYOUT		Ш	$\top \top \top$	35	VACUUM CONSENSE LAYOUT	21	PLC RACK 0 LAYOUT		$\Pi\Pi\Pi$		35	VACUUM CONSENSE LAYOUT	Ш	П	1	
21A	TELEFAST RACK 0 DI 0.2 LAYOUT		Ш	TTT	36	VACUUM INSTRUMENT REAR PLATE LAYOUT	21A	TELEFAST RACK 0 DI 0.2 LAYOUT			$\Pi\Pi$	36	VACUUM INSTRUMENT REAR PLATE LAYOUT	Ш	Π	1	
218	TELEFAST RACK 0 DI 0.3 LAYOUT	$\neg \sqcap$	Ш	$\top \top \top$	37	VACUUM INSTRUMENT GAUGE CONNECTIONS 4	218	TELEFAST RACK 0 DI 0.3 LAYOUT		ПП	$\Pi\Pi$	37	VACUUM INSTRUMENT GAUGE CONNECTIONS	4	Π	1	-
21C	TELEFAST RACK 0 DO 0.4 LAYOUT	$\neg \sqcap$	Ш	\Box	38	VACUUM INSTRUMENT GAUGE CONNECTIONS E	210	TELEFAST RACK 0 DO 0.4 LAYOUT			$\Pi\Pi$	38	VACUUM INSTRUMENT GAUGE CONNECTIONS	411	Π	1	
210	TELEFAST RACK 0 AO 0.7/0.8 LAYOUT		Ш		39	VACUUM INSTRUMENT GAUGE CONNECTIONS (210	TELEFAST RACK 0 AO 0.7/0.8 LAYOUT	r			39	VACUUM INSTRUMENT GAUGE CONNECTIONS	4	Ш	I	
21E	TELEFAST RACK 0 DO 0.9/0.10 LAYOUT		Ш	$\Pi\Pi$	40	VACUUM INSTRUMENT GAUGE CONNECTIONS ()	21E	TELEFAST RACK 0 DO 0.9/0.10 LAYOU	ΤL			40	VACUUM INSTRUMENT GAUGE CONNECTIONS	d	Ш	I	ì
Note:							Note	e ;								_	•
13				14_09_2023		praising by CAE	IUMERO-DIS	C+80+.	mESS4	Pland (SRAIN_CRYOSTAT_CONTROL_BOX 14_09_2023			_			
y Okres	Deta:						100	CHANGE DATE SIGNAT, Approved	DATA				SMEETS-IMDEX				

Prepared by Cryogenic Service of INFN-LNL









Prepared by Cryogenic Service of INFN-LNL

Thank You