HENSA collaboration at LNGS: characterization of the underground neutron flux

Nil Mont-Geli¹ on behalf of the HENSA collaboration²

¹Institut de Tècniques Energètiques (INTE)-Universitat Politècnica de Catalunya (UPC) Av. Diagonal 647, E-0828, Barcelona (Catalonia) **nil.mont@upc.edu**

²www.hensaproject.org

High Efficiency Neutron Spectrometry Array

The HENSA collaboration

HENSA High Efficiency Neutron Spectrometry Array

www.hensaproject.org

The HENSA collaboration

H E N S A High Efficiency Neutron Spectrometry Array

HENSA collaboration at Laboratori Nazionali del Gran Sasso (LNGS)

UNIVERSITAT POLITÈCNICA DE CATALUNYA BARCELONATECH

Institut de Tècniques Energètiques

UNIVERSIDAD DE GRANADA

HELMHOLTZ 7 FNTRUM DRESDEN ROSSENDORF

HENSA High Efficiency Neutron Spectrometry Array

Characterization of the underground neutron flux at LNGS

- Absolute magnitude of the neutron flux.
- Energy spectrum.
- Local variations.
- Temporal/seasonal fluctuations.

HENSA High Efficiency Neutron Spectrometry Array

It is a high efficiency neutron detection system based on the same principles than Bonner Spheres.

 Array of moderated proportional neutron counters with variable sizes in order to provide sensitivty at different neutron energies.

$$M_i = \int R_i(E)\phi(E) \,\mathrm{d}E. \quad \longrightarrow \quad M_i = \sum_{j=1}^n R_{ij}\phi_j$$

From M and R, we estimate the real spectrum Φ (unfolding)

HIGH Efficiency Neutron Spectrometry Array

It is a high efficiency neutron detection system based on the same principles than Bonner Spheres.

- **Original idea by J.L. Tain (IFIC) in 2010**: high efficiency spectrometer with digital acquisition system for CUNA project (Canfranc Underground Nuclear Astrophysics).
- HENSA is achieved by a topological change in Bonner Spheres in order to benefit from high detection efficiency in cylindrical proportional neutron counters (<u>60 cm</u> <u>active length</u>).
- HENSA project is a scientific collaboration for the exploitation of the spectrometer. Focus on measurements in *underground laboratories* and *secondary neutrons produced by cosmic-rays*.

HENSA High Efficiency Neutron Spectrometry Array

Above thermal energies: moderation (HDPE) First version of the HENSA setup (6 detectors) in 2011

Neutron detection in He-3 proportional counters

HENSA High Efficiency Neutron Spectrometry Array

HENSA neutron response is ~5-15 times larger than standard Bonner Spheres systems in the energy range from thermal up to 20 MeV.

Use of **larger counters** (3He) and of moderators (HDPE) with the shape of a rectangular prisms.

HENSA at LSC (first measurement in hall A)

D. Jordan *et al* 2013, Astroparticle Physics 42, 1 – 6 *Corrigendum*: D. Jordan *et al* 2020, Astroparticle Physics 118, 102372

HIGH Efficiency Neutron Spectrometry Array

HENSA at Felsenkeller

M. Grieger et al 2020, Phys. Rev. D 101, 123027

HIGH Efficiency Neutron Spectrometry Array

HENSA at Felsenkeller

M. Grieger et al 2020, Phys. Rev. D 101, 123027

Long-term measurement at LSC (hall A) S. E. A. Orrigo *et al* 2021, J. Phys.: Conf. Ser. 2156, 012169 S. E. A. Orrigo *et al* 2022, European Physics Journal C 82, 814

Long-term measurement at LSC (hall B) N. Mont-Geli *et al* 2021, J. Phys.: Conf. Ser. 2156, 01223 N. Mont-Geli *et al* 2023, Proceedings of Science 441, 312

HENSA High Efficiency Neutron Spectrometry Array

HENSA for CR (in 2020 and since 2023/2024)

HENSA High Efficiency Neutron Spectrometry Array

Long-term measurements in halls A and B

Two setups:

- HENSA-v2019 (hall A, October 2019 March 2021).
- HENSA-v2019 (hall B, February 2022 August 2022).
- HENSA-v2022 (hall B, since August 2022) Better spectral resolution

HENSA High Efficiency Neutron Spectrometry Array

Responses

www.particlecounter.net

HENSA High Efficiency Neutron Spectrometry Array

Neutron source in hall A

Monte Carlo FLUKA (v. 4.3.2) calculations used to estimate the neutron flux in Canfranc.

- (α,n) reactions.
- Spontaneous fission.
- Muon-induced neutrons

Thermal peak ~ $4.5 - 6.5 \cdot 10^{-8}$ MeV Isolethargic intermediate region Fast peak ~ 0.5 - 3 MeV HE peak ~ 50 MeV

Concrete contribution: 94% Rock contribution: 6% Muons contribution: 0.03%

HENSA High Efficiency Neutron Spectrometry Array

Neutron source in hall A

Monte Carlo FLUKA (v. 4.3.2) calculations used to estimate the neutron flux **in Canfranc**.

- (α,n) reactions.
- Spontaneous fission.
- Muon-induced neutrons

Thermal peak ~ $4.5 - 6.5 \cdot 10^{-8}$ MeV Isolethargic intermediate region Fast peak ~ 0.5 - 3 MeV HE peak ~ 50 MeV

Concrete contribution: 94% Rock contribution: 6% Muons contribution: 0.03%

HENSA High Efficiency Neutron Spectrometry Array

Energy spectrum Unfolding algorithms:

$$M_i = \int R_i(E)\phi(E) \,\mathrm{d}E. \quad \longrightarrow \quad M_i = \sum_{j=1}^n R_{ij}\phi_j$$

- Bayesian method: S. Agostini, NIM A 362 (1995) 487
 Computational implementation by <u>J.L Tain (IFIC) and D. Cano-Ott (CIEMAT)</u>.
- GRAVEL and MAXED implemented in UMG package version 3.3 (free-distributed by PTB).
 - MAXED: M. Reginatto et al., NIM A 476 (2002) 242
 - GRAVEL: M. Matzke, Report PTB-N-19 (1994)

Unfolding typically relies on some preliminary knowledge abpout the spectrum (prior spectrum)

21

Energy spectrum (hall B)

N. Mont-Geli et al 2023, Proceedings of Science 441, 312

HENSA at LNGS

HENSA High Efficiency Neutron Spectrometry Array

- Setup assembled in hall A from 17 to 20 April 2024.
- Acquisition started on 20 April 2024.

HENSA at LNGS

HENSA High Efficiency Neutron Spectrometry Array

- 10 He-3 thermal neutron counters (2.54 cm diameter, 60 cm length)
- HDPE shielding with variable sizes (HDPE thickness from 32 to 380 mm)

HENSA at LNGS

HENSA High Efficiency Neutron Spectrometry Array

Current HENSA plans at LNGS

- Short measurements (2 4 months) at different locations:
 - Hall A, since late April 2024.
 - Inside the new STELLA facility (begin in mid-July until late September/October).
 - Other locations: hall B, hall C.
- Long-term monitorization of the neutron flux (minimum 1 year).
 - Location to be decided.

HENSA High Efficiency Neutron Spectrometry Array

Status of the neutron data at LNGS

Work	Hall	Technique		
Belli (1989)	А	BF3 counters + variable size moderators (Spec.)		
Aleskan (1989)	А	Li-6 scintillator (> 3 MeV)		
Arneodo (1999)	С	Proton recoil scintillation detector (Spec.)		
Belloti (1985)	В	3He counters, bare + 1 paraffin (thermal and fast)		
Debicki (2009)	?	3He bare counters (thermal)		
Cribier (1995)	А	CaNO3 radiochemical detector (> 2.5 MeV)		
Rindi (1888)	?	3He counters, bare + paraffin + bare and cd		
Best (2016)	No hall	3He bare counters (thermal)		
Debicki (2018)	(same 2009)	3He counters + long counter for fast neutrons		
Bruno (2019)	A (LVD)	Liquid scintillators (above 10 MeV)		

HENSA High Efficiency Neutron Spectrometry Array

Status of the neutron data at LNGS

I have compiled ten different previous works related with neutrons (1985 – 2019).

Only two works provides a "complete" spectrum (from thermal to fast energies):

- Belli (1989) using a HENSA-like setup (but no unfolding) in hall A.
- Arneodo (1999) direct energy measurement (proton recoil) in hall C.

Moreover, discrepancies between measurements. Example in hall A:

- Fast flux (cm^-2 s^-1):
 - Belli (1989): 0.32(14) E-6 (contribution above 2.5 MeV)
 - Aleskan (1989): 0.78(4)E-6 (only above 3 MeV)
 - Cribier (1995): 0.09(6)E-6 (only above 2.5 MeV)

HENSA High Efficiency Neutron Spectrometry Array

Pulse-height spectrum (neutron events overlaped with other contributions)

HENSA High Efficiency Neutron Spectrometry Array

All signals (from 0 to 1000 keV)

28

HIGH Efficiency Neutron Spectrometry Array

All signals (from 100 to 1000 keV)

SignalsMap

HENSA High Efficiency Neutron Spectrometry Array

Pulse Shape Discrimination (noise filter)

SignalsMap

Pulse Shape Discrimination (noise filter)

HIGH Efficiency Neutron Spectrometry Array

Pulse Shape Discrimination (gamma rays and "fast" discharges filter)

• A filter based on the the risetime differences: Langford *et al* NIM A **717** (2013)

HIGH Efficiency Neutron Spectrometry Array

Pulse Shape Discrimination (gamma rays and "fast" discharges filter)

• A filter based on the the risetime differences: Langford *et al* NIM A **717** (2013)

HENSA High Efficiency Neutron Spectrometry Array

Pulse Shape Discrimination (Gamma filter)

SignalsMap

Pulse Shape Discrimination (Langford filter)

SignalsMap

Pulse Shape Discrimination (noise + Langford filter)

HENSA High Efficiency Neutron Spectrometry Array

Pulse Shape Discrimination ("slow" discharges filter)

HENSA High Efficiency Neutron Spectrometry Array

Pulse-height spectrum (+ PSD)

HENSA High Efficiency Neutron Spectrometry Array

Pulse-height spectrum at LSC (comparison with a pure 252Cf neutron spectrum)

39

HENSA High Efficiency Neutron Spectrometry Array

Characterization of the alpha background Characterization of the intrinsic backgroud at Canfranc (LSC, Aug 23 – Feb 24)

- Counters completely covered with cadmium.
- Embedded in a HDPE shielding.
- The result is that all neutron are absorbed before reaching the ³He.
- No neutrons are detected.

HENSA High Efficiency Neutron Spectrometry Array

Characterization of the alpha background

Characterization of the intrinsic backgroud at Canfranc (LSC, Aug 23 – Feb 24)

HENSA High Efficiency Neutron Spectrometry Array

Substraction of the alpha background

The alpha background is our main limitation!

Substraction of the alpha background (residuals)

HENSA High Efficiency Neutron Spectrometry Array

Substraction of the alpha background (counting time: 59 days)

Detector	Rate (cps)	Error (cps)	Error
1	1.38E-04	7.31E-06	5.3%
2	1.48E-04	7.37E-06	5.0%
3	1.76E-04	8.55E-06	4.9%
4	1.42E-04	7.47E-06	5.3%
5	1.12E-04	6.82E-06	6.1%
7	4.51E-05	5.87E-06	13.0%
9	1.33E-05	5.30E-06	39.9%
12	1.67E-05	5.38E-06	32.3%
13	6.97E-05	6.15E-06	8.8%
14	1.25E-04	7.13E-06	5.7%

HENSA High Efficiency Neutron Spectrometry Array

Substraction of the alpha background (counting time: 59 days)

Detector	Rate (cps)	Error (cps)	Error
1	1.38E-04	3.28E-06	2.4%
2	1.48E-04	2.77E-06	1.9%
3	1.76E-04	3.96E-06	2.2%
4	1.42E-04	3.11E-06	2.2%
5	1.12E-04	2.92E-06	2.6%
7	4.51E-05	2.97E-06	6.6%
9	1.33E-05	3.20E-06	24.1%
12	1.67E-05	2.90E-06	17.4%
13	6.97E-05	2.89E-06	4.1%
14	1.25E-04	3.28E-06	2.6%

HENSA High Efficiency Neutron Spectrometry Array

Energy spectrum HENSA sensitivty from thermal up to 20 MeV

46

HENSA High Efficiency Neutron Spectrometry Array

0.5 – 3 MeV

Energy spectrum (up to ~ 20 MeV) Prior spectra (from Monte Carlo simulations)

Energy spectrum: (average from different priors)

HENSA High Efficiency Neutron Spectrometry Array

Neutron flux in hall A (preliminary)

	Thermal	Intermediate	Fast flux	Total flux
LNGS (hall A)	1.40(6)	2.16(5)	2.60(3)	5.85(8)
LSC (hall B)	7.45(1)	7.425(7)	5.57(2)	20.45(2)
Belli 1989*	1.08(2)	-	0.86(14)	3.78(26)
Best (2016)**	0.320(130)	-	-	-

*P. Belli et al. (1989): a mesurement of the neutron flux in hall A of the LNGS using an array of 5 large BF3 counters shielde with polyethylene and cadmium. The upper limits for thermal region they used is 0.5e-7 eV. **Not in hall A, but in the the "interferometer tunnel"

Thermal: 0 < E < 3.2E-7 MeV Intermediate: 3.2E-7 < E < 0.1 MeV Fast: 0.1 < E < 20 MeV About Belli (1989): Maximum polyethylene shielding was 140 mm. In HENSA is 380 mm.

HIGH Efficiency Neutron Spectrometry Array

- HENSA is a high efficiency neutron detection system based on the same principle than Bonner Spheres providing sensitivy to neutrons from thermal energies up to MeV.
- HENSA has been succesfully used for many years at the Canfranc Underground Laboratory (LSC) in order to characterize the underground neutron flux.
- A replica of HENSA has been assembled at LNGS. Firts results have been presented.

HENSA High Efficiency Neutron Spectrometry Array

We acknowledge Spanish Grant PID2022-138297NB-C22 funded by MCIN/AEI and "ERDF a way of making Europe" and the MRR (Recuperation and Resilience Mechanism) co-financed by the Generalitat de Catalunya, the Spanish MCIN and the EU.