RelaQS: Relaxation by Quantum Simulation with ultracold atom-based experiments

Obiettivo scientifico:

studiare la dinamica di gas quantistici di atomi ultrafreddi al fine di modellizzare interazioni e meccanismi fondamentali alla base della fisica delle alte energie, focalizzandosi sui processi di rilassamento in teorie di campo e di eccitazioni topologiche.

Articolazione:

- TIFPA: ricreare ed osservare in laboratorio alcuni aspetti propri di teorie di campo e di materia fortemente correlata, come il meccanismo di decadimento di campi metastabili (processo noto come decadimento di falso vuoto),
- Firenze: studio della dinamica di rilassamento di eccitazioni topologiche (vortici quantizzati) in fermioni fortemente correlati (eg. glitches in stelle di neutroni).

Genesi della proposta: FISH

• "WHAT NEXT" $2015 \rightarrow 2021$,

studio sperimentale di fisica fondamentale con approcci innovativi.

- Obiettivo: simulazione quantistica di interazioni fondamentali su piattaforma di gas atomici ultrafreddi;
- Approccio innovativo: impiego di gas superfluidi di spin con accoppiamento coerente
 - \rightarrow simulatione equatione Sine-Gordon,
 - → ingegnerizzazione di potenziali per teorie di campo;
- Innovazione tecnologica: produrre e studiare gas ultrafreddi in regime di stabilità estrema di campo magnetico;
 - G. Colzi et al., Phys. Rev. A 93, 023421 (2016)
 - T. Bienaimé et al., Phys. Rev. A 94, 063652 (2016)
 - E. Fava et al,. Phys. Rev. Lett. 120, 170401 (2018)
 - G. Colzi et al., Phys. Rev. A 97, 053625 (2018)
 - A. Farolfi et al., Rev. Sci. Instr. 90, 115114 (2019)
 - A. Farolfi et al., Phys. Rev. Lett. 125, 030401 (2020)
 - A. Farolfi et al., Phys. Rev. A 104, 023326 (2021)
 - A. Farolfi et al., Nature Physics 17, 1359 (2021)
 - R. Cominotti et al., Phys. Rev. Lett. 128, 210401 (2022)

the experimental platform

from one component to spin mixtures

- U(1)xU(1) symmetry
- Three interaction parameters $g_{ij} = \frac{4\pi\hbar^2 a_{ij}}{m}$

$$\begin{split} i\hbar\partial_t\psi_{\downarrow} &= \left[-\frac{\hbar^2}{2m}\nabla^2 + V + g_{\downarrow\downarrow}|\psi_{\downarrow}|^2 + g_{\downarrow\uparrow}|\psi_{\uparrow}|^2\right]\psi_{\downarrow}\\ i\hbar\partial_t\psi_{\uparrow} &= \left[-\frac{\hbar^2}{2m}\nabla^2 + V + g_{\uparrow\uparrow}|\psi_{\uparrow}|^2 + g_{\downarrow\uparrow}|\psi_{\downarrow}|^2\right]\psi_{\uparrow} \end{split}$$

from one component to spin mixtures

miscible mixture, $\Omega = 0$: elementary excitations

R. Cominotti et al., Phys. Rev. Lett. 128, 210401 (2022)

Faraday spectroscopy to measure the dispersion relations of the normal modes:

... to Rabi-coupled spin mixtures

• U(1) symmetry

$$\begin{split} i\hbar\partial_t\psi_{\downarrow} &= \left[-\frac{\hbar^2}{2m}\nabla^2 + V + g_{\downarrow\downarrow}|\psi_{\downarrow}|^2 + g_{\downarrow\uparrow}|\psi_{\uparrow}|^2\right]\psi_{\downarrow} - \frac{\hbar\Omega_R}{2}\psi_{\uparrow} \\ i\hbar\partial_t\psi_{\uparrow} &= \left[-\frac{\hbar^2}{2m}\nabla^2 + V + g_{\uparrow\uparrow}|\psi_{\uparrow}|^2 + g_{\downarrow\uparrow}|\psi_{\downarrow}|^2\right]\psi_{\uparrow} - \frac{\hbar\Omega_R}{2}\psi_{\downarrow} \end{split}$$

 N_1 and N_2 not independently conserved

$$\delta g = \frac{g_{\downarrow\downarrow} + g_{\uparrow\uparrow}}{2} - g_{\uparrow\downarrow}$$
 Set the relevant energy scale

Energy scale	$\mu_B \delta B$	$\ll \hbar \Omega_R$	$< \left \delta g ight n$
Temperature			15 ÷ 60 nK
Frequency	10 Hz	100 ÷ 600 Hz	300 ÷ 1200 Hz
Magnetic field	5 µG	50 ÷ 100 µG	

... in a magnetically shielded environment

A. Farolfi, D. Trypogeorgos, G. Colzi, E. Fava, G. Lamporesi, GF Rev. Scient. Instr. **90**, 115114 (2019)

immiscible mixture

$$\begin{aligned} i\hbar\frac{\partial}{\partial t}\psi_a &= \left(-\frac{\hbar^2}{2m}\nabla^2 + V + g_a|\psi_a|^2 + g_{ab}|\psi_b|^2\right)\psi_a - \frac{\hbar\Omega}{2}\psi_b \\ i\hbar\frac{\partial}{\partial t}\psi_b &= \left(-\frac{\hbar^2}{2m}\nabla^2 + V + g_b|\psi_b|^2 + g_{ab}|\psi_a|^2 - \hbar\Delta\right)\psi_b - \frac{\hbar\Omega^*}{2}\psi_a \end{aligned}$$

Competition between spin interactions and coupling

$$\mathbf{W}_{\text{eff}} = \left(\Omega, 0, \Delta - \frac{n\delta g_1}{\hbar} - \frac{n\delta g_2 Z}{\hbar}\right)$$

immiscible mixture

$$E(Z,\phi) \propto (n\delta g_1 - \hbar\Delta) Z + \frac{n\delta g_2}{2}Z^2 - \hbar\Omega\sqrt{1-Z^2}\cos\phi$$

complete phase diagram of GS

key magnetic properties

MAGNETIC SUSCEPTIBILITY

FLUCTUATIONS OF THE MAGNETIZATION

R. Cominotti et al., PRX 13, 021037 (2023)

false vacuum decay

Single particle

Nonuniform external potential

Single particle tunneling

Wavefunction overlap

Many-body quantum system with internal degrees of freedom Quantum field

Nontrivial energy landscape (field internal state and orbital origin)

Macroscopic tunneling

Fluctuation-driven

false vacuum decay

Applied to cosmological problems (Big bang , stability of universe)

S.R. Coleman, Phys. Rev. D 15, 2929 (1977)

nucleation of true vacuum bubble

• Thermal fluctuations drive the tunneling

false vacuum decay

A. Zenesini et al., Nat. Phys. 20, 558 (2024)

scaling of the bubble nucleation time

Large range on τ (2 – 200 ms)

A. Zenesini et al., Nat. Phys. 20, 558 (2024)

Stato attuale e obiettivi

Dove siamo

- prima osservazione sperimentale di decadimento di falso vuoto (FVD).
- prima verifica qualitativa dei tempi scala VS modello istantonico 1D (Coleman '77).

Obiettivi

- Estendere al caso 2D, validae simulazioni numeriche (non esistono modelli analitici).
- Intrappolamento in potenziale omogeneo 1D e 2D \rightarrow nucleazione simultanea di più bolle.
- Studio di eccitazioni topologiche generate a seguito della fusione di bolle.

Milestones TIFPA

Milestones 2025

- Implementazione del setup ottico per la manipolazione coerente dei gradi di liberta' di spin con risoluzione spaziale.
- Decadimento di falso vuoto a temperatura finita, gas 1 dimensionale.

Milestones successive

- Studio della dinamica di crescita e di interazione tra domini di magnetizzazione.
- Studio di eccitazioni topologiche generate a seguito della fusione di domini di magnetizzazione.
- Realizzazione di una trappola ottica omogenea 1D.
- Realizzazione di una trappola ottica 2D.
- Decadimento di falso vuoto in sistemi 1D omogenei.
- Decadimento di falso vuoto in sistemi 2D omogenei.

Milestones Firenze

Milestones 2025

- Implementazione del setup ottico per la manipolazione coerente dei gradi di liberta' di spin con risoluzione spaziale.
- Decadimento di falso vuoto a temperatura finita, gas 1 dimensionale.

Milestones successive

- Coefficienti di mutual friction tra vortici in funzione della temperatura,
- Coefficienti di mutual friction in funzione dello sbilanciamento in popolazione di spin,
- Studio dell'interazione vortici-suono,
- Studio dell'interazione vortici-suono in funzione della temperatura.

Ricercatori coinvolti

TIFPA:		
Gabriele Ferrari	prof UNITN	50%
Giacomo Lamporesi	staff CNR-INO	30%
Alessandro Zenesini	staff CNR-INO	30%
lacopo Carusotto	staff CNR-INO	20%
Alessio Recati	staff CNR-INO	20%
Cosetta Baroni	postdoc CNR-INO	50%
Riccardo Cominotti	postdoc CNR-INO	50%
Chiara Rogora	dottoranda UniTN	50%
Diego Andreoni	dottorando UniTN	50%
	Totale: 9 pesone,	3.5 FTE

Firenze:

	Totale: 5 pesone,	2.3 FTE
Nicola Grani	dottorando UniFI	50%
Diego Hernandez Rajkov	dottorando LENS	50%
Marcia Frometa	assegnista CNR-INO	50%
Giulia Del Pace	RTDA UniFI	50%
Giacomo Roati, Pl	staff CNR-INO	30%

Richieste 2025

Manutenzione e trasporti: riparazione sorgenti laser HP 30.5k€

- Consumo:
- alimentatori di corrente bipolari alta stabilità
- fibre ottiche PM luce visibile
- fibre ottiche PCF alta potenza IR
- amplificatori e minuteria microonda
- adattatore di impedenza microonda
- Missioni: collaborazione + nazionali + internazionali
- Pubblicazioni open access:

15k€ (TIFPA + FI) 9k€ (TIFPA + FI)

61k€