Activity and financial requests - Auger LNGS

F. Salamida Università dell'Aquila & INFN LNGS

L'Aquila Auger Group

10.7 FTE in total (8.4 in 2024)

1	Sergio Petrera	0%	GSSI	Prof. Ordinario - in quiescenza
2	Vincenzo Rizi	60%	UNIVAQ	Prof. Ordinario
3	Ivan De Mitri	60%	GSSI	Prof. Ordinario
4	Roberto Aloisio	60%	GSSI	Prof. Ordinario
5	Francesco Salamida	80%	UNIVAQ	Prof. Associato - Responsabile locale
6	Denise Boncioli	70%	UNIVAQ	Prof.ssa Associata
7	Carmelo Evoli	60%	GSSI	Prof. Associato
8	Felicia Barbato	60%	GSSI	RTD/B
9	Pierpaolo Savina	60%	GSSI	RTD/A
10	Fabio Convenga	100%	UNIVAQ/LNGS	Assegnista
11	Emanuele Avocone	60%	UNIVAQ	Assegnista
12	Camilla Petrucci	100%	UNIVAQ	Dottoranda
13	Alessandro Cermenati	100%	GSSI	Dottorando
14	Luciana Andrade Dourado	100%	GSSI	Dottoranda
15	Igor Vaiman	100%	GSSI	Dottorando

Responsibilities in Auger

Publications 07/2023 - 07/2024

- 1. AugerPrime Surface Detector Electronics JINST 18 (2023) P10016
- 2. Testing Hadronic-Model Predictions of Depth of Maximum of Air-Shower Profiles and Ground-Particle Signals using Hybrid Data of the Pierre Auger Observatory Phys. Rev. D 109, 102001 (2024)
- 3. Constraints on metastable superheavy dark matter coupled to sterile neutrinos with the Pierre Auger Observatory Phys. Rev. D 109, L081101 (2024)
- Ground observations of a space laser for the assessment of its in-orbit performance Optica 11 (2024) 263-272
- 5. Constraining models for the origin of ultra-high-energy cosmic rays with a novel combined analysis of arrival directions, spectrum, and composition data measured at the Pierre Auger Observatory JCAP 01 (2024) 022
- Radio Measurements of the Depths of Air Shower Maxima at the Pierre Auger Observatory Phys. Rev. D 109 (2024) 022002 (sibling of a PRL)
- Demonstrating Agreement between Radio and Fluorescence Measurements of the Depth of Maximum of Extensive Air Showers at the Pierre Auger Observatory - Phys. Rev. Lett. 132 (2024) 021001 (sibling of the PRD)
- 8. Impact of the Magnetic Horizon on the Interpretation of the Pierre Auger Observatory Spectrum and Composition Data Accepted in JCAP

The publications with a relevant contribution from the L'Aquila group are highlighted

Main LNGS group activities

- Spectrum Measurement with Hybrid Events i.e., Fluorescence Detector + Surface
- Development and Maintenance of the SimProp Code for UHECR Propagation
- Analysis of Spectrum + Composition Measurements in Terms of Astrophysical Scenarios
- High-Energy Neutrinos and photon searches in the Context of Multimessenger Astronomy
- Mass Measurement Analysis
- Study of Limits on Lorentz Invariance Violation with UHECRs
- Limits on Dark Matter
- Properties of UHECR Fluxes Exiting Galaxies
- Outreach activities: Auger Masterclass, Street Science
- Commissioning of the UUB
- Atmospheric Characterization Activities with the Raman Lidar/CLF

Main LNGS group activities

- Spectrum Measurement with Hybrid Events i.e., Fluorescence Detector + Surface
- Development and Maintenance of the SimProp Code for UHECR Propagation
- Analysis of Spectrum + Composition Measurements in Terms of Astrophysical Scenarios
- High-Energy Neutrinos and photon searches in the Context of Multimessenger Astronomy
- Mass Measurement Analysis
- Study of Limits on Lorentz Invariance Violation with UHECRs
- Limits on Dark Matter
- Properties of UHECR Fluxes Exiting Galaxies
- Outreach activities: Auger Masterclass, Street Science
- Commissioning of the UUB
- Atmospheric Characterization Activities with the Raman Lidar/CLF

The items that will be discussed in the next slides are highlighted

Neutral particles and Multi-Messenger Physics

- Neutral particles play a crucial role for the current efforts in **multi-messenger astronomy**
- One of the main goals: understanding <u>where and</u> <u>how</u> UHECRs are produced
- Intimate connection between UHE photons and neutrinos and UHECRs
- Can be produced either directly at the sources of UHECRs (**astrophysical**) or during their

propagation through the Universe (cosmogenic)

- <u>Complementary messengers</u>: photons trace the local Universe up to Mpc scales, while neutrinos can traverse the whole Universe
- Neutral particles can also serve as cosmic probes of fundamental physics and open a window to new physics

Neutrinos and Multi-Messenger Physics

Simultaneous information coming from UHECRs spectrum and associated neutrino fluxes

Mass composition/fractions

- Cosmogenic neutrinos are more sensitive to the distribution of UHECR sources in redshift than UHECR themselves, due to the UHECR horizon
- Cosmogenic neutrinos are produced in photo-meson productions -> UHECR mass composition influences the expected neutrino flux (as well as the UHECR spectral parameters)

- Determining the UHECR proton fraction at the highest energies is crucial for understanding the detected UHECR mass composition, but also indirectly to better constrain the UHECR characteristics
- Determination of heavy masses relevant for understanding of acceleration processes (re-acceleration?) and/or mass composition in acceleration sites

Mass composition/fractions

Fundamental Physics: LI Violation in EAS

- Lorentz Invariance (LI) could be considered as a low-energy approximation and it may be deformed approaching the Planck scale (about 15 orders of magnitude larger than the LHC center of mass energy).
- Possible LIV effects can be tested at the extreme energies available in UHECR propagation and shower development
- Following the phenomenological approach of S. R. Coleman and S. L. Glashow D 59, 116008 (1999) :

 $E^2 - p^2 = m^2 + \eta^{(n)} \frac{p^{n+2}}{M_{\rm Pl}^n}$ n is the $m_{\rm LIV}^2 = m^2 + \eta^{(n)} \frac{p^{n+2}}{M_{\rm Pl}^n}$ $\gamma_{\rm LIV} = E/m_{\rm LIV}$ for certain LIV scenarios the neutral pion in showers does not decay

above a certain energy threshold

Fundamental Physics: LI Violation in EAS

UUB commissioning: FD-SD time offset

- Between UB and UUB there is a time offset
- Indirect offset measurement
- Direct offset measurement on Jamie
- The value was measured to be

 $\Delta\,t_{ub-uub}^{start\,\,time} = 68.4 \pm 2.5 ns$

• Estimating how the presence of some outliers may affect the measurement, despite this is the best we have so far

Direct measurements made on a tank equipped with UB and UUB

Atmospheric Monitoring

- The Auger Raman Lidar is measuring the aerosol optical properties @355 nm since November 2013;
- Laser and single board computer maintenance @ CLF by V.Rizi in November 2024/ March 2025 work in synergy with the Naples group (see R. Colalillo talk for details)

Richieste Finanziarie 2025

6 H I		Parziali (k€)		Rimuovi	Modifica	Totale (k€)		
Capitolo	Descrizione		sj			Richieste	SJ	
consumo	manutenzione ordinaria Lidar Raman e CLF e contributo per single board computer spare		0.00	۵	0	3	0	
missioni	n.1 meeting annuale con i Referees CSN2-INFN per il responsabile locale	1.00	0.00	1	0			
	n.2 turni di presa dati FD (Rivelatore di Fluorescenza) presso l'Osservatorio Pierre Auger (1 turno/persona: 4 keuro)	8.00	0.00	1	0			
	Partecipazione al Meeting di Collaborazione Internazionale (Marzo 2025) per 5 persone (3 keuro/persona/meeting)	15.00	0.00	۵	0			
	Partecipazione al Meeting di Collaborazione Internazionale (Novembre 2025) per 5 persone (3 keuro/persona/meeting)	15.00	0.00	۵	0			
	n.2 turni tecnici (in concomitanza con il meeting di collaborazione di Marzo e di Novembre, 4 keurox 2 = 8 keuro) per responsabilita' manutenzione Lidar Raman/CLF	8.00	0.00	۵	0	63	0	
	n.2 trasferte (n.1 in situ 3 keuro e n.2 in Europa 1.5 keuro x 2) di coordinamento scientifico dell'osservatorio per responsabilita "Science coordinator" di Auger	6.00	0.00	۵	0			
	n.2 turni tecnici (in concomitanza con il meeting di collaborazione di Marzo e di Novembre, 4 keuro x 2 = 8 keuro) per responsabilita di coordinamento del Detector dei Fluorescenza.	8.00	0.00	۵	0			
	2 missioni per 1 fisici (2K * 4) al CNAF per le operazioni di trasferimento dell'Auger data center da Lyon al CNAF			۵	0			
trasporti	Trasporti sul sito per partecipazione meeting Novembre 2025	1.00	0.00	۵	0		5.5 0	
	Trasporti sul sito per partecipazione meeting Marzo 2025	1.00	0.00	۵	0			
	Trasporti sul sito sperimentale per turno FD	1.50	0.00	۵	0	5.5		
	Trasporto sul sito per turni tecnici di manutenzione Lidar Raman ed FD	2.00	0.00	۵	0			
Totale						71.5	0	

The Pierre Auger Observatory

Southern hemisphere: Malargue, Province Mendoza, Argentina

Surface detector (SD)

- 1600 stations in 1.5 km grid, 3000 km² E > 10^{18.5} eV
- 61 stations in 750 m grid, 23.5 km², E > 10^{17.5} eV
- 19 stations in 433 m grid, E > 6 10¹⁶ eV

Fluorescence detector (FD)

- 24 telescopes in 4 sites, FoV: 0-30°, E>10¹⁸ eV
- HEAT (3 telescopes), FoV: 30 60°, E>10¹⁷ eV

Auger Engineering Radio Array (AERA)

153 antennas in 17 km² array, E> 4 10¹⁸eV

Underground muon detector

• 19(61) stations in 433(750)m array 10^{16.5}<E< 10¹⁹ eV

Auger Phase I data taking from 2004 on (from 2008 with the full array) to 2021 AugerPrime commissioning phase 2022-2023 Auger Phase II data taking from 2024 to 2035

The Pierre Auger Observatory

Southern hemisphere: Malargue, Province Mendoza, Argentina

Surface detector (SD)

- 1600 stations in 1.5 km grid, 3000 km² E > 10^{18.5} eV
- 61 stations in 750 m grid, 23.5 km², E > 10^{17.5} eV
- 19 stations in 433 m grid, E > 6 10¹⁶ eV

Fluorescence detector (FD)

- 24 telescopes in 4 sites, FoV: 0-30°, E>10¹⁸ eV
- HEAT (3 telescopes), FoV: 30 60°, E>10¹⁷ eV

Auger Engineering Radio Array (AERA)

153 antennas in 17 km² array, E> 4 10¹⁸eV

Underground muon detector

• 19(61) stations in 433(750)m array 10^{16.5}<E< 10¹⁹ eV

Auger Phase I data taking from 2004 on (from 2008 with the full array) to 2021 AugerPrime commissioning phase 2022-2023 Auger Phase II data taking from 2024 to 2035

Auger Prime detectors

New electronics (UUB) and Scintillators(SSD)

High dynamic range PMTs

Underground Muon Detector (UMD)

AugerPrime Status

Complementary detectors to discriminate em. and muonic components

Status of Upgrade

- Scintillators: 1450 installed
- Muon detectors: 38 installed
- Radio: 904 (411) installed

- About **50000** SD events above 3 x 10¹⁸ eV (factor ~10 more then FD)
- Arrival times and traces fed to CNN + RNN networks

- positions of the breaks correlated with spectrum features
- confirmation that mass composition is lighter and mixed at lower energies, getting heavier and more pure as the energy increase

Astrophysical scenarios and mass composition

SCENARIO: identical source populations uniformly distributed

- proton-only accelerating sources **disfavoured**, nuclei-only accelerating sources **favoured**
- rigidity dependenent scenario **favoured** with hard spectral indexes

Prediction from combined fit reproduce the breaks as seen in the DNN analysis