

Single detection cell

A first measurement with a simpler system

Description

- TIC crystal (3.6x3.6x1.8 cm³ CsI:TI)
- S14160-4050HS (4x4 mm², 50 µm cell)
 - Attach a **SiPM** using a <u>optical grease</u>
 - Wrap the whole crystal using Vikuiti
- Use Raffaello's operational amplifier
 - Sample **maximum** at oscilloscope

- Not 2.0x2.0x0.25 cm³
- → Not the best candidate
 - → Not optical silicone
 - Not Al/Ag deposition

NB The crystal was old and not healthy

GOALS:

- Test the overall experimental setup for future use
- Understand how many keV of X-ray are necessary to detect a scintillation photon in the SiPM sensor
 1) Need to see the dark count peaks
 2) Need two sources for calibration

Radioactive sources [#photon]

Radioactive sources [keV]

Dark count pile-up

S[keV] = S[photon] * c + d

c = 3.0071023 keV / photon d = -34.263650 keV \rightarrow Dark Count = 11.4(should we correct for CT?)

A detected dark count pile up of 11.4 photons corresponds to a sampling time of 3 µs, which is larger than expected:

- 2.5 µs sampling after trigger
- 0.5 µs from trigger to maximum

First deposition attempts

Sputtering machine

- It must be shared among experiments
- Each deposition requires about 1 day
- Deposition is <u>homogeneous</u> for ~300 nm
 - The sample is fixed using **carbon tape**
- <u>Two depositions per crystal</u> are necessary
 - A small window must be done for SiPM

NB Deposition made on new crystals cut to 1.8x1.8x0.5 cm³

GOALS:

- Test the deposition procedure
- Estimate deposition non-homogeneity
- Estimate contamination in deposition
- Understand if dead layers are formed
 - Measure the optical parameters

Al deposition works well but:
There are imperfections near the crystal corner

• Removing the tape does / not leave clean edges

Glue SiPM before deposition?

- Clean glue edges?
- Number of SiPM?
 - Outgassing?

Ag deposition works well but it quickly oxidizes/corrodes!

What generate corrosion?

- Need to treat CsI surface?
 - Need to passivate Ag?

Non-homogeneity and contamination

Non-homogeneity:

• SEM → Cannot access it!

Contamination:

- RBS \rightarrow Failed to detect O!
- Need of a Al/Ag deposition on a thinner, lighter, O-free substrate layer...
- XPS \rightarrow No information yet
- This techniques works well but only for a few *nm* (incomplete information)

Optical parameters

Several parameters are necessary to tune the optical simulation: • CsI self-absorption length

- Al and Ag reflectivity
- Surface roughness However, it was <u>not</u> possible to measure any of them...

Activity Plan

Desposition

Open Problems

Ag

- Understand the origin of corrosion
 - Study a solution for this effect

AI and Ag

- Study a solution for crystal corner and SiPM edge imperfections
 - Fix the SiPM gluing and LEMO soldering procedure on crystal
- Find a way to get contamination and non-homogeneity in metal

TO DO: Deposition

AI

• Estimate how collection efficiency changes with deposition depth

Interaction with crystals

• Understand if deposition changes crystal surface to become passive

Mechanics

• Implement a soft mechanics to test just one channel with source

Crystal and SiPM

TO DO: Crystals CsI(TI) and GAGG(Ce)

- Compare collection efficiency (and rise time) of the two crystals
- Measure how collection efficiency changes with surface polishing
 - For GAGG(Ce), measure light yield change at low temperatures

TO DO: SiPM

- Compare collection efficiency with different SiPM by Hamamatsu
- Measure how collection efficiency changes with overvoltage
 - Study a system to stabilize operating point vs temperature

I hope that order will be completed in a few weeks... We have already received new SiPM by Hamamatsu

Prototype (far future)

Idea: Prototype

• Build a small prototype (5-10 channels) to be tested [LABEC?]

TO DO: Prototype

Build a simple mechanics compliant with fragility of Al/Ag
Study/Buy electronics for front-end and data acquistion

	$\frac{\rm Energy}{\rm (keV)}$	Photons (per 100 disint.)
$\gamma_{1,0}(Ba)$ $\gamma_{2,1}(Ba)$ $\gamma_{2,0}(Ba)$	$\begin{array}{c} 283,\!46 (7) \\ 378,\!20 (7) \\ 661,\!655 (3) \end{array}$	$\begin{array}{c} 0,0006 \ (1) \\ 0,0000106 \ (9) \\ 85,01 \ (20) \end{array}$

		$\begin{array}{c} {\rm Energy} \\ {\rm (keV)} \end{array}$		Photons (per 100 disint.)		
XL	(Ba)	3,9544 - 5,8104		0,919 (16)		
$\begin{array}{c} { m XK} lpha_2 \ { m XK} lpha_1 \end{array}$	(Ba) (Ba)	31,8174 32,1939		1,99 (4) 3,66 (6)	}	$K\alpha$
$egin{array}{c} { m XK}eta_3\ { m XK}eta_1\ { m XK}eta_5^{''} \end{array}$	(Ba) (Ba) (Ba)	$36,3045 \\ 36,3786 \\ 36,654$	}	1,078 (20)		$\mathrm{K}'\beta_1$
$\begin{array}{c} { m XK}eta_2 \ { m XK}eta_4 \ { m XKO}_{2,3} \end{array}$	(Ba) (Ba) (Ba)	37,258 37,312 37,425	}	0,272 (8)		$\mathrm{K}'eta_2$

							Energy (keV)	Photons (per 100 disint.)	
		$_{\rm (keV)}^{\rm Energy}$	Photons (per 100 disint.)			$\begin{array}{c} \gamma_{4,3}(\mathrm{Cs}) \\ \gamma_{2,1}(\mathrm{Cs}) \\ \gamma_{1,0}(\mathrm{Cs}) \\ \gamma_{2,0}(\mathrm{Cs}) \\ \gamma_{3,2}(\mathrm{Cs}) \\ \gamma_{4,2}(\mathrm{Cs}) \end{array}$	$\begin{array}{c} 53,1622\ (18)\\ 79,6142\ (19)\\ 80,9979\ (11)\\ 160,6121\ (16)\\ 223,2368\ (13)\\ 276,3989\ (12) \end{array}$	$\begin{array}{c} 2,14 \ (6) \\ 2,63 \ (19) \\ 33,31 \ (30) \\ 0,638 \ (6) \\ 0,450 \ (5) \\ 7,13 \ (6) \end{array}$	
XL XK α_2 XK α_1	(Cs) (Cs) (Cs)	3,7946 - 5,5525 30,6254 30,9731	$\begin{array}{c} 15,87\ (26)\\ 33,8\ (4)\\ 62,4\ (7)\end{array}$	}	$K\alpha$	$\gamma_{3,1}(Cs)$ $\gamma_{4,1}(Cs)$ $\gamma_{3,0}(Cs)$	$\begin{array}{c} 302,8508 \ (5) \\ 356,0129 \ (7) \\ 383,8485 \ (12) \end{array}$	$\begin{array}{c} 18,31 \ (11) \\ 62,05 \ (19) \\ 8,94 \ (6) \end{array}$	
$egin{array}{c} { m XK}eta_3 \ { m XK}eta_1 \ { m XK}eta_5'' \end{array}$	(Cs) (Cs) (Cs)	34,9197 34,9873 35,252	} 18,24 (29)		$\mathrm{K}'\beta_1$				
$\begin{array}{c} { m XK}eta_2 \ { m XK}eta_4 \ { m XKO}_{2,3} \end{array}$	$\begin{array}{c} (\mathrm{Cs}) \\ (\mathrm{Cs}) \\ (\mathrm{Cs}) \end{array}$	35,822 35,907 35,972	4,45 (12)		$\mathrm{K}'\beta_2$				

