Hunting for dark photons from Higgs boson decays with the ATLAS detector: a data-driven approach to the estimation of backgrounds in events with a photon and missing transverse momentum

Tesi di Laurea Magistrale in Fisica di: Giulia Maineri

Relatori: Prof. Marcello Fanti, Dott.ssa Silvia Resconi, Dott.ssa Federica Piazza

UNIVERSITÀ DEGLI STUDI DI MILANO FACOLTÀ DI SCIENZE E TECNOLOGIE

Giulia Maineri

Standard Model

 γ_d

Dark Sector

m. 22

Dark Photon γ_d

Giulia Maineri

Data-driven bkg study in ggH $\gamma\gamma_d$ Analysis Laurea Magistrale in Fisica 4/25

Standard Model

Dark Sector

m 22

= nac

Dark Photon γ_d

Signal

Giulia Maineri

Image: A matrix

EL SQC

Missing transverse momentum

Signal: $gg \rightarrow H \rightarrow \gamma \gamma_d$

• 1 well-identified ("tight") isolated photon with $p_T^{\gamma} > 50 \text{ GeV};$

- 1 well-identified ("tight") isolated photon with $p_T^{\gamma} > 50 \text{ GeV};$
- missing transverse momentum $p_T^{miss} > 100 \text{ GeV};$

Signal: $gg \rightarrow H \rightarrow \gamma \gamma_d$

- 1 well-identified ("tight") isolated photon with $p_T^{\gamma} > 50 \text{ GeV};$
- missing transverse momentum $p_T^{miss} > 100 \text{ GeV};$

• leptons veto, $N_l = 0, l \in \{e, \mu, \tau\}$;

Signal: $gg \rightarrow H \rightarrow \gamma \gamma_d$

- 1 well-identified ("tight") isolated photon with $p_T^{\gamma} > 50 \text{ GeV};$
- missing transverse momentum $p_T^{miss} > 100 \text{ GeV};$

- leptons veto, $N_I = 0, I \in \{e, \mu, \tau\}$;
- transverse mass $m_T > 80 \text{ GeV}$.

$$m_T = \sqrt{2 p_T^{miss} p_T^\gamma (1 - \cos \Delta \Phi(ec{p}_T^\gamma, ec{p}_T^{miss}))}$$

Backgrounds

Background processes:

- irreducible: $Z(\rightarrow \nu\nu)\gamma$;
- reducible:
 - $W(\rightarrow I\nu_I)\gamma$, lost lepton;
 - multijets, Wjets, Zjets, jets faking photons (jet → γ);
 - γ jets, true photon but fake p_T^{miss} .

<ロ> <日> <日> <日> <日> <日> <日> <日> <日> <日</p>

Backgrounds

Background processes:

- irreducible: $Z(\rightarrow \nu\nu)\gamma$;
- reducible:
 - $W(\rightarrow I\nu_I)\gamma$, lost lepton;
 - multijets, Wjets, Zjets, jets faking photons (jet → γ);
 - γ jets, true photon but fake p_T^{miss} .

Backgrounds

Background processes:

- irreducible: $Z(\rightarrow \nu\nu)\gamma$;
- reducible:
 - $W(\rightarrow l\nu_l)\gamma$, lost lepton;
 - multijets, Wjets, Zjets, jets faking photons (jet → γ);
 - γ jets, true photon but fake p_T^{miss} .

Jets faking photons background

EL SAR

Jets faking photons

Before the reconstruction process:

12

Jets faking photons

12

Isolation

How can we discriminate true and fake photons? \implies Isolation

$$isol = rac{E_T^{isolation}}{p_T^{\gamma}}$$

Isolation Regions

How can we discriminate true and fake photons? \implies **Isolation**

Giulia Maineri

=

Fake factors

How can we discriminate true and fake photons? \implies **Isolation**

Fake factors calculation

Problems:

- We cannot fully trust Monte Carlo as isolation is typically not well modelled for jets faking photons;
- In data, we cannot distinguish true and fake photons!
- \implies we need to **extract** the tight fake photons isolation distribution in data.

Image: A matrix

э

三日 のへの

Extrapolation method

Image: Image:

A =
 A =
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

EL OQO

Extrapolation method

<ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 < の へ の

Validation of the hypotheses

L: loose T: tight L5: loose5

Extrapolated isolation distribution of fake photons passing tight identification

Uncertainties on R, R_b have been assumed to be equal to $|R - 1|, |R_b - 1|$.

-

Fake factors

Fake factors have been computed in different geometric regions of the detector...

Region	f	σ_f	%
1	1.51	0.18	11.7 %
2	2.03	0.35	17.1~%
4	1.95	0.34	17.2 %
5	1.70	0.27	15.7 %

Jets faking photons final estimation

Fake factors have been computed in different geometric regions of the detector...

Region	f	σ_f	%
1	1.51	0.18	11.7 %
2	2.03	0.35	17.1~%
4	1.95	0.34	17.2 %
5	1.70	0.27	15.7 %

...and then **applied** to the Non-Isolated Control Region.

Jets faking photons final estimation

...and then **applied** to the Non-Isolated Control Region.

Comparison with the yield in Monte Carlo:

$$N_{j \rightarrow \gamma}^{MC} = 228 \pm 70$$
 $N_{j \rightarrow \gamma}^{data-driven} = 775 \pm 116$

$W\gamma$ background

Giulia Maineri

K-factors

We need to extract **K-factors** to be used to correct the cross-section approximation of Monte Carlo simulations.

$$K = \left(\frac{N_{W\gamma}^{data}}{N_{W\gamma}^{MC}}\right)_{1\mu CR}$$

ELE DOG

K-factors and 1 Muon Control Region

We need to extract **K-factors** to be used to correct the cross-section approximation of Monte Carlo simulations.

$$K = \left(rac{N_{W\gamma}^{data}}{N_{W\gamma}^{MC}}
ight)_{1\mu CR}$$

We construct a 1 Muon Control Region enriched of $W\gamma$ events, where the muon is treated as invisible.

Jets faking photons in the 1 Muon Control Region

The jets faking photons contribution to the 1 Muon Control Region is estimated using the **fake factors** calculated in the previous part of the work. \rightarrow Jets faking photons data-driven estimation is much higher than Monte Carlo!

K-factors calculation

K-factors have been computed in different **transverse mass** bins...

 m_T without muon contribution in the 1 Muon CR for $W\gamma$, $Z\gamma$, γ jets, jets faking photons and data.
K-factors calculation

K-factors have been computed in different **transverse mass** bins...

 m_T without muon contribution in the 1 Muon CR for $W\gamma$, $Z\gamma$, γ jets, jets faking photons and data.

K-factors calculation

K-factors have been computed in different **transverse mass** bins...

 m_T without muon contribution in the 1 Muon CR for $W\gamma$ and subtracted data.

K-factors calculation

K-factors have been computed in different **transverse mass** bins...

$$K = \left(\frac{N_{W\gamma}^{data}}{N_{W\gamma}^{MC}}\right)_{1\mu CR} = \left(\frac{N^{data} - N_{bkg \neq W\gamma}}{N_{W\gamma}^{MC}}\right)_{1\mu CR}$$

$$\frac{\overline{m_T (\text{GeV}) \quad K \quad \sigma_K^{stat} \quad \sigma_K^{sys} \quad \sigma_K^{tot}}}{80\text{-}110 \quad 0.869 \quad 0.131 \quad 0.074 \quad 0.150}$$

$$110\text{-}140 \quad 0.939 \quad 0.119 \quad 0.076 \quad 0.141$$

$$140\text{-}200 \quad 1.023 \quad 0.117 \quad 0.073 \quad 0.138$$

$$> 200 \quad 1.089 \quad 0.197 \quad 0.067 \quad 0.208}$$

where

$$\sigma_{K}^{sys} = \frac{K(ff - \sigma_{ff}) - K(ff + \sigma_{ff})}{2}$$

 m_T without muon contribution in the 1 Muon CR for $W\gamma$ and subtracted data.

ATLAS Simulation Internal

10⁵

 $\times 10^{5}$

) 250 300 m_r (nomuon) [MeV]

10

10

10⁵

10

1.5 1 0.5

0h

50 100 150 200

K-factors application

K-factors have been computed in different transverse mass bins...

m_T (GeV)	K	$\sigma_{\rm K}^{\rm tot}$	%
80-110	0.869	0.150	17.3 %
110-140	0.939	0.141	15.0 %
140-200	1.023	0.138	13.5 %
>200	1.089	0.208	19.1 %

..and then **applied** to Monte Carlo in Signal Region.

23 / 25

< □ > < 同 > < 回 > < Ξ > < Ξ

三日 のへの

Image: A matrix

∃ → < ∃</p>

三日 のへの

Jets faking photons and $W\gamma$ constitute \sim 60% of the total background in Signal Region.

ELE NOR

Jets faking photons and $W\gamma$ constitute \sim 60% of the total background in Signal Region.

=

• I contributed to the backgrounds estimation in the ATLAS search for dark photons;

- I contributed to the backgrounds estimation in the ATLAS search for dark photons;
- I developed a new data-driven technique for the jets faking photons estimation;

- I contributed to the backgrounds estimation in the ATLAS search for dark photons;
- I developed a new data-driven technique for the jets faking photons estimation;
- I estimated the $W\gamma$ background, using the k-factors method;

- I contributed to the backgrounds estimation in the ATLAS search for dark photons;
- I developed a new data-driven technique for the jets faking photons estimation;
- I estimated the $W\gamma$ background, using the k-factors method;
- Jets faking photons and $W\gamma$ constitute \sim 60% of the total background in Signal Region;

- I contributed to the backgrounds estimation in the ATLAS search for dark photons;
- I developed a new data-driven technique for the jets faking photons estimation;
- I estimated the $W\gamma$ background, using the k-factors method;
- Jets faking photons and $W\gamma$ constitute \sim 60% of the total background in Signal Region;
- The analysis $gg \rightarrow H \rightarrow \gamma \gamma_d$ is on-going;

- I contributed to the backgrounds estimation in the ATLAS search for dark photons;
- I developed a new data-driven technique for the jets faking photons estimation;
- I estimated the $W\gamma$ background, using the k-factors method;
- Jets faking photons and $W\gamma$ constitute \sim 60% of the total background in Signal Region;
- The analysis $gg \rightarrow H \rightarrow \gamma \gamma_d$ is on-going;
- These results will enter the official ATLAS analysis publication.

Backup

Image: A matrix

三日 のへの

Dark Matter, Dark Sector, Dark Photon

Giulia Maineri

DM candidates should be:

- neutral;
- cold, non-relativistic at the time of CMB formation;
- stable or at least with lifetime longer than the age of the Universe;
- weakly interacting with themselves and with ordinary matter.

Some candidates:

- WIMPs, Weakly Interacting Massive Particles, e.g. SUSY;
- sterile neutrinos, RH neutrinos with low mixing constant with ordinary neutrinos;
- many others...

- SUSY theory introduced to explation the difference between the measured value of the Higgs boson mass and the one predicted by the first order calculation, including the top annihilation term;
- particles with spin differing by half a unit with respect to the SM;
- s-top annihilation term would compensate the top annihilation term;
- viable DM candidates: neutralinos.

ELE NOR

DM evidences

S (source)

I (image)

• CMB spectrum

= nac

The portal and can take various forms:

• vector portal \implies massive dark photon

$$\mathcal{L}_{\textit{kin.mix.}} = rac{1}{2}arepsilon {\sf F}_{\mu
u} {\sf F}'^{\mu
u}$$

where F, F' are field strength tensors of the SM U(1) and the dark U(1)_D. For a massless dark photon, the direct kinetic mixing is not possible. There should be "something" in between.

- scalar portal;
- neutrino portal.

Analysis

Image: A matrix

三日 のへの

э

$$\eta = -\ln\left[\tan\frac{\theta}{2}\right] \tag{1}$$

where θ is the polar angle. This formula set a one-to-one correspondence between the θ coordinate of a polar system and η , moving domain from $(0, \pi)$ to $(-\infty, +\infty)$.

 $\Delta\eta$ is invariant under Lorentzian boosts along beam axis; this becomes important as the reference frame of the center-of-mass of the interaction is unknown.

Higgs production channels

ъ

ELE NOR

Signal Region

All the cuts defining Signal Region

- $n_e = 0$, electrons veto;
- $n_{\mu} = 0$, muon veto;
- $n_{ au} = 0$, tau lepton veto;
- *p*_T^{miss} > 100 GeV;
- $n_{\gamma}^{isol} = 1$, one isolated photon;
- $p_T^{\gamma} > 50 \text{ GeV};$
- $m_T > 80 \, \text{GeV};$
- *n_{jet}* ≤ 3, maximum 3 jets;
- $\Delta \Phi(\vec{p}_T^{miss}, [\vec{p}_T^{miss}]_{\gamma}) \ge 1.25$, γ, γ_d in the transverse region;
- $S_{p_T^{miss}} > 6$, in order to remove fake p_T^{miss} ;
- $\Delta p_T^{miss} > -10 \, \mathrm{GeV}$
- $|\eta_{\gamma}| < 1.75$, γ, γ_d in the transverse region;;
- $\Delta \Phi(\vec{p}_T^{miss}, [\vec{p}_T^{miss}]_j) \leq$ 0.75, the Higgs boson should scatter on the jets;
- $\Delta \Phi(\vec{p}_T^{j1}, \vec{p}_T^{j2}) \leq 2.5$, in order to remove dijets.

IN IL NOR

$$\Delta p_T^{miss}$$
 variable

$$\Delta |\vec{p}_T^{miss}| = |[\vec{p}_T^{miss}]_{noJVT}| - |\vec{p}_T^{miss}|$$
(2)

This cut targets γ +jets background events.

As the **hard scattering event vertex** is chosen by picking the one with the highest scalar sum of the momenta of all the tracks produced in it, in a γ +jets event, where a big portion of momentum is carried away by the photon, there is a non-negligible probability to elect a pile-up vertex as hard scattering vertex. If JVT cut is applied in such a case, this will lead to **exclude the real jet** from \vec{p}_T^{miss} calculation, hence resulting in a large fake missing transverse momentum in the final state.

Events where the p_T^{miss} calculated with JVT is much higher than the p_T^{miss} calculated with JVT are in most of the cases events with a mis-reconstructed primary vertex and can be then **excluded**.

Jet Vertex Tag (JVT)

$$JVT = rac{\sum_{j \in hard \; scattering} p_T^j}{\sum_j p_T^j}$$

 \implies reject the jet if JVT is under a certain threshold!

I= nac

- 1 tight photon, $N_{\gamma} = 1;$
- photon transverse momentum $|\vec{p}_T^{\gamma}| > 50 \text{ GeV};$
- missing transverse momentum $|\vec{p}_T^{miss}| > 40 \text{ GeV}$ with calculation based on cells and $|\vec{p}_T^{miss}| > 70 \text{ GeV}$ with calculation including tracks;
- transverse mass $m_T > 80$ GeV.

Backgrounds estimation strategy

- irreducible background: $Z(\rightarrow \nu \nu)\gamma$;
- lost lepton: $W(\rightarrow I\nu_I)\gamma$;
- jets faking photons: multijets, Zjets, Wjets;
- electrons faking photons: $W(\rightarrow e\nu_e)$ jets, $Z(\rightarrow ee)$ jets;
- fake p_T^{miss} .

Strategy 1

- electrons faking photons data-driven
- jets faking photons data-driven
- $W\gamma, Z\gamma$ from leptons CR
- γ jets Monte Carlo

Strategy 2

- electrons faking photons data-driven
- fake p_T^{miss} data-driven
- $W\gamma + W$ jets, $Z\gamma + Z$ jets from leptons CR

Jets faking photons

Giulia Maineri

ELE NOR

True and fake photons isolation comparison

Calorimeter relative isolation

$${\it isol}_{\it calo}^{\it rel} = rac{E_T^{\it calo40}-2450}{p_T^{\gamma}}$$

where

 p_T^{γ} is the photon transverse momentum;

 E_T^{calo40} is the energy not belonging to the photon measured in a cone with radius $\Delta R = 0.4$ around the photon;

2,45 GeV is a pedestal factor.

The fraction of true photons in the Non-Isolated Region is given by the **purity** *P*.

$$P = \left(\frac{N_{\gamma}^{non-isol}}{N^{non-isol}}\right)_{tight} = \left(\frac{N^{non-isol} - N_{j \rightarrow \gamma}^{non-isol}}{N^{non-isol}}\right)_{tight} = \left(1 - \left(\frac{N_{j \rightarrow \gamma}^{non-isol}}{N^{non-isol}}\right)_{tight}\right)_{tight}$$
depends on the number of non isolated photons produced in the event.

It is not an intrinsic property of how we "see" jets! We would like to have $P \sim 0$, i.e. no contamination of true photons in the Non-Isolated Region.

ELE NOR

Non-Isolated Region definition

Let's define the Non-Isolated Region such to have $P\sim$ 0, i.e. no contamination of true photons in the Non-Isolated Region.

Let's look at a **pure** sample of photons, that can be obtained selecting $Z(\rightarrow \mu\mu\gamma)$ events.

Giulia Maineri

Non-Isolated Region definition

In order to select $Z(\rightarrow \mu\mu\gamma)$ events, let's consider events in the $\mu\mu\gamma$ sample with a tight photon and 80 GeV $< m_{\mu\mu\gamma} < 100$ GeV.

Non-Isolated Region definition

Looking at the calorimeter relative isolation of these events, we decide to put the cut of the Non-Isolated Region at 0.1.

Calo isolation, Z radiative, tight

Figure 3: Discriminant Variables (DVs) describing shower shapes, energy ratios and width of the energy deposit

-

Different possibile ID selection:

- tight, passing tight cuts on all the DVs;
- **loose**, if they pass looser cuts on some DVs $(R_{\eta}, R_{had} \text{ and } w_{\eta,2})$ but not the tight ones;
- **loose5**, if they are loose and pass tight cuts on more DVs $(R_{\eta}, R_{had}, w_{\eta,2})$ and R_{ϕ} ;

Larger statistic, lower true photons contamination

ELE NOR

Figure 4: Discriminant Variables (DVs) describing shower shapes, energy ratios and width of the energy deposit (loose) Image: 三日 のへの Laurea Magistrale in Fisica

Giulia Maineri

25 / 65

Loose5 photons

Figure 5: Discriminant Variables (DVs) describing shower shapes, energy ratios and width of the energy deposit (loose5)

Giulia Maineri

A D > <
 A P >

ELE NOR

Step 1: get L->T transformation from MC

Let's assume that tight $isol_T^{MC}$ and loose $isol_L^{MC}$ distributions in μ : median MC are linked by an affine transformation. σ : width

$$isol_T^{MC} = a + b \, isol_L^{MC}$$

We want to find a, b such that:

Step 1: get L->T transformation from MC

Let's assume:

• the scale factor *b* stays the same in MC and data;

• the offset *a* in data should depend on $\sigma_L^{data}, \sigma_T^{data}$, which is known, and on μ_T^{data} , which is unknown. So we assume the shift of the average going from loose to tight is proportional to the rms in both data and MC.

 $\frac{\sigma_T^{data}}{\sigma_L^{data}} = \frac{\sigma_T^{MC}}{\sigma_L^{MC}}$

μ: median σ: width

 μ : median σ : width

= nac

Putting all together, the transformation for DATA is:

$$isol_{T}^{data} = \mu_{L}^{data} + \frac{\sigma_{L}^{data}}{\sigma_{L}^{MC}} (\mu_{T}^{MC} - \mu_{L}^{MC}) + \frac{\sigma_{T}^{MC}}{\sigma_{L}^{MC}} (isol_{L}^{data} - \mu_{L}^{data})$$

 \rightarrow We obtain **tight fake photons** distributions in DATA.

Width is calculated as difference between the 16th and 84th percentile.

I= nac

Binning in η

Pseudorapidity binning is chosen considering the detector geometry:

- Region 1: [0; 0.6], the upper limit $\eta = 0.6$ is the point after which the material in front of ECAL increases a lot;
- Region 2: [0.6; 1.37], the upper limit is defined by the beginning of the crack region;
- Crack region: [1.37; 1.52], not used due to low reconstruction performance;
- Region 4: [1.52; 1.81], the upper limit is the point where the presampler ends;
- Region 5: [1.81; 2.37].

Analysis Trigger, R, R_b

Figure 6: $R(\eta, p_T)$ and $R_b(\eta, p_T)$ computed with $(\mu_{med}, \sigma_{q16})$ using Analysis Trigger.

ъ

ELE NOR

We decide to use (median&width) instead of (mean&sigma) for the extrapolation: R, R_b values in different η, p_T are indeed less spread.

Trigger	Ratio	Used variables	RMS in η, p_T bins
	P	μ, σ	0.19
Analysis	Λ	μ_{med}, σ_{q16}	0.14
Analysis	D	μ, σ	0.30
	harpoonup here here here here here here here her	μ_{med}, σ_{q16}	0.28
	D	μ, σ	0.27
miss	Л	μ_{med}, σ_{q16}	0.10
p _T	R _b	μ, σ	0.22
		μ_{med}, σ_{q16}	0.13
			0.54
Leptonic	Λ	μ_{med}, σ_{q16}	0.18
	D	μ, σ	0.51
	Кb	μ_{med}, σ_{q16}	0.36

Problem: *R* and *R*_b are quite unstable. It is not possible to perform the extrapolation in exclusive regions in p_T , η .

Solution: Let's be either inclusive in p_T or in η .

Inclusive Region and Trigger

Problem: How to choose the Inclusive Region and the Trigger to be used?

Trigger	Analysis	p_T^miss	Leptonic
рт			
η			

Solution: Let's choose the configuration satisfying the requirements:

- the spectrum of the inclusive variable in data and MC should be similar;
- the configuration should ensure the lowest uncertainties on the fake factors.

Figure 7: η distribution for loose and tight γ in data and MC samples (Analysis Trigger).

eta_loose_trigger_met90 eta_tight_trigger_met90 0.014 0.012 data data MC MC 0.012 0.0 0.01 0.008 0.008 0.006 0.006 0.004 0.004 0.002 0.002 (b) Tight (a) Loose

Figure 8: η distribution for loose and tight γ in data and MC samples (p_T^{miss} Trigger).

eta_loose_(trigger_el||trigger_mu||trigger_diel||trigger_dimu)

eta_tight_(trigger_el||trigger_mu||trigger_diel||trigger_dimu)

Figure 9: η distribution for loose and tight γ in data and MC samples (Leptonic Trigger).

Figure 10: p_T distribution for loose and tight γ in data and MC (Analysis Trigger).

Figure 11: p_T distribution for loose and tight γ in data and MC (p_T^{miss} Trigger).

Figure 12: p_T distribution for loose and tight γ in data and MC (Leptonic Trigger).

Trigger	Analysis	p _T ^{miss}	Leptonic
рт			
η			

Image: A matrix

크 > < 크

三日 のへの

Trigger	Incl. Region	R _{nom}	R _{up}	R _{down}	R _{b,nom}	R _{b,up}	R _{b,down}
analysis	η	1.10	1.20	1.00	1.36	1.72	1.00
	р _Т	1.06	1.12	1.00	1.28	1.56	1.00
p_T^miss	η	0.82	1.00	0.64	1.06	1.12	1.00
leptonic	р _Т	0.79	1.00	0.58	1.02	1.04	1.00

Table 1: Nominal and varied values of R and R_b for the different configurations of inclusive region and trigger possible.

Let's now extrapolate the tight fake photons isolation distributions in data using these R, R_b (nominal and varied) for each configuration.

Fake factors in different configurations

Figure 13: Fake factors stability check for p_T^{miss} Trigger in the η inclusive region (right) and Analysis Trigger in the η inclusive region (left) using nominal R, R_b .

Fake factors in different configurations

(a) Analysis Trigger, p_T inclusive region.

Figure 14: Fake factors stability check for Leptonic Trigger in the p_T inclusive region (right) and Analysis Trigger in the p_T inclusive region (left) using nominal R, R_b .

We can now calculate the uncertainties on these fake factors as:

$$\sigma_{\rm ff} = \sqrt{\sigma_{R_b}^2 + \sigma_R^2}$$

where

$$\sigma_{R_b} = \left(\frac{ff(R_{nom}, R_{b,up}) - ff(R_{nom}, R_{b,down})}{2}\right)$$
$$\sigma_R = \left(\frac{ff(R_{up}, R_{nom}) - ff(R_{down}, R_{nom})}{2}\right)$$

Fake factors in different configurations

η bin	ff	$\sigma_{\it ff}$	%
1	1.51	0.35	23.4 %
2	2.03	0.69	34.1 %
4	1.95	0.67	34.4 %
5	1.70	0.54	31.4 %

η bin	ff	σ_{ff}	%
1	2.29	1.48	64.4 %
2	1.82	0.82	45.1 %
4	2.25	0.98	43.6 %
5	2.47	1.30	52.7 %

Table 2: Fake factors in p_T incl region using Analysis(I) and Leptonic Trigger(r).

p_T bin	ff	$\sigma_{\rm ff}$	%	<i>p</i> _T bin	ff	$\sigma_{\rm ff}$	%
3	0.71	0.12	17.4 %	3	0.94	0.80	84.6 %
4	0.71	0.19	27.6 %	4	0.67	0.63	95.3 %
5	1.50	0.67	44.6 %	5	1.02	0.80	79.2 %
6	1.36	0.83	61.1 %	6	1.46	1.08	73.9 %
7	1.82	1.03	56.9 %	7	1.30	1.19	91.6 %
8	1.34	0.31	23.4 %	8	1.27	0.79	62.7 %

Table 3: Fake factors in the η incl region using Analysis(I) and p_T^{miss} Trigger(r).

We extrapolate the number of jets faking photons in SR $N_{\text{ext}}^{SR}(ff)$ and compute its uncertainty from the fake factors uncertainty σ_N

$$\sigma_{N} = \frac{N(ff + \sigma_{ff}) - N(ff - \sigma_{ff})}{2}$$

Jet faking photons extrapolated with nominal/varied fake factors

	$N_{ extsf{ext}}^{SR}(extsf{ff})\pm\sigma_N$	$N_{ m ext}^{SR}(\mathit{ff}-\sigma_{\mathit{ff}})$	$N_{\mathrm{ext}}^{SR}(\mathit{ff} + \sigma_{\mathit{ff}})$
all	$9.2e+06 \pm 1.5e+06$	1.0745e+07	7.7145e+06
$n_e = 0$	9.2e+06 ±1.5e + 06	1.0745e+07	7.7145e+06
$n_{\mu}=0$	$9.2e+06 \pm 1.5e+06$	1.0745e+07	7.7145e+06
$ ho_T^{miss} > 100 { m GeV}$	$1.4e+06 \pm 2.2e+05$	1.6335e+06	1.1838e+06
$n_{\gamma}^{nonisol}$	2.7e+05±4.2e+04	3.1206e+05	2.2676e+05
$p_T^{\dot{\gamma}} > 50 \text{Gev}$	2.6e+05 ±4.2e + 04	3.0792e+05	2.2377e+05
n _{jet}	$2.1e+05 \pm 3.3e+04$	2.4302e+05	1.7653e+05
$m_T > 80 { m GeV}$	$2.1e+05 \pm 3.3e+04$	2.4175e+05	1.756e+05
$\Delta \Phi(ec{ ho}_T^{miss}, [ec{ ho}_T^{miss}]_\gamma) \geq 1.25$	$8146\ \pm 1291$	9440	6857
$S_{ ho_T^{miss}} > 6$	$1695~{\pm}267$	1963	1429
$\Delta ho_T^{miss} > -10 { m GeV}$	1311 ± 206	1518	1105
$ \eta_{\gamma} <\leq 1.75$	$1022\ {\pm}160$	1183	863
$\Delta \Phi(ec{ ho}_T^{miss}, [ec{ ho}_T^{miss}]_j) \leq 0.75$	$926\ \pm 145$	1073	782
$\Delta\Phi(ec{ ho}_T^{j1},ec{ ho}_T^{j2})\leq 2.5$	775 ± 116	897	655

Monte Carlo samples in Signal Region

	multijets	$\gamma + jets(f)$	W+jets	Z+jets	sum
all	6.2709e+08	1.9313e+06	21836	13044	6.2906e+08
$n_{el}=0$	6.2709e+08	1.9313e+06	21836	13044	6.2906e+08
$n_{\mu}=0$	6.2709e+08	1.9313e+06	21836	13044	6.2906e+08
$p_T^{miss} > 100 \text{GeV}$	3.691e+08	2.3888e+05	11572	8612	3.6936e+08
$n_{\gamma}^{isol} = 1$	5.3566e+07	1.1368e+05	1282	701.51	5.3682e+07
$p_T^{\dot{\gamma}} > 50 \text{GeV}$	5.3566e+07	1.1248e+05	1276	699.92	5.3681e+07
$n_{jet} < 4$	3.8745e+05	82875	1112	630.72	4.7207e+05
$m_T > 80 \text{ GeV}$	3.8736e+05	82259	1061	626.18	4.713e+05
$\Delta \Phi(\vec{p}_T^{miss}, [\vec{p}_T^{miss}]_{\gamma}) \ge 1.25$	2552.8	5230	133.89	43.494	7959.9
$S_{p_{\tau}^{miss}} > 6$	344.28	1001	104.31	36.287	1486.2
$\Delta p_T^{miss} > -10 \text{GeV}$	215.74	591.05	95.261	34.069	936.12
$ \eta_{\gamma} < 1.75$	165.45	383.81	71.445	28.204	648.91
$\Delta \Phi(\vec{p}_T^{miss}, [\vec{p}_T^{miss}]_{jet}) \leq 0.75$	137.74	338.96	63.101	23.481	563.28
$\Delta\Phi(p_T^{j1},p_T^{j2})\leq 2.5$	0.6921	166.28	56.848	22.082	245.91

ELE NOR

Applying fake factors to CR

Comparison between MC and data-driven estimation

Applying fake factors to CR

Comparison between MC and data-driven estimation

-

Applying fake factors to CR

Comparison between MC and data-driven estimation

ъ

Non-Isolated Control Region

三日 のへの

$W\gamma$

CR vs SR comparison

Figure 18: m_T (in SR) and $[m_T]_{no\mu}$ (in CR) distributions.

CR vs SR comparison

Figure 19: p_T^{miss} (in SR) and $[p_T^{miss}]_{no\mu}$ (in CR) distributions.

=
1μ Control Region

Signal Region

- $N_{\gamma}^{isol} = 1;$
- $N_e = 0$;
- $N_{\mu} = 0;$
- $|\vec{p}_T^{miss}| > 100 \, \text{GeV};$ ——
- $|\vec{p}_{\tau}^{\gamma}| > 50 \, \text{GeV};$
- $N_{iets} \leq 3;$
- $m_T > 80 \, \text{GeV};$ —
- $\Delta \Phi(\vec{p}_T^{miss}, [\vec{p}_T^{miss}]_{\gamma}) \geq 1.25; \longrightarrow \Phi \Phi([\vec{p}_T^{miss}]_{no,\mu}, [\vec{p}_T^{miss}]_{\gamma}) \geq 1.25;$
- $S_{p_{\tau}^{miss}} > 6;$
- $\Delta |\vec{p}_T^{miss}| > -10 \, \text{GeV};$ —— \longrightarrow $\Delta |[\vec{p}_T^{miss}]_{no |\mu|} > -10 \text{ GeV};$
- $\Delta \Phi(\vec{p}_T^{miss}, [\vec{p}_T^{miss}]_{iet}) \leq 0.75;$ $\Delta \Phi([\vec{p}_T^{miss}]_{no\ \mu}, [\vec{p}_T^{miss}]_{iet}) \leq 0.75;$
- $\Delta \Phi(\vec{p}_{\tau}^{j1}, \vec{p}_{\tau}^{j2}) \leq 2.5.$ • $\Delta \Phi(\vec{p}_{\tau}^{j1}, \vec{p}_{\tau}^{j2}) \leq 2.5$

1μ Control Region

• $N_{\gamma}^{isol} = 1;$

•
$$N_e = 0;$$

• $N_{\mu} = 1;$

•
$$|[\vec{p}_T^{miss}]_{no\ \mu}| > 100 \, \text{GeV};$$

- $|\vec{p}_{\tau}^{\gamma}| > 50 \, \text{GeV};$
- $N_{iets} \leq 3;$
- ▶ $[m_T]_{no \mu} > 80 \text{ GeV};$

 - $S_{[p_{\tau}^{miss}]_{nout}} > 6;$

We would like to calculate a K-factor as ratio between the number of events in data and Monte Carlo in the Control Region, to **correct** the imperfections of the simulations.

We would like to calculate a K-factor as ratio between the number of events in data and Monte Carlo in the Control Region, to **correct** the imperfections of the simulations.

The K-factor will be later applied to Monte-Carlo in the Signal Region to get the **final estimation** of the background yield in Signal Region.

We would like to calculate a K-factor as ratio between the number of events in data and Monte Carlo in the Control Region, to **correct** the imperfections of the simulations.

The K-factor will be later applied to Monte-Carlo in the Signal Region to get the **final estimation** of the background yield in Signal Region.

We calculated K-factors in 3 different ways:

- for all the Monte Carlo samples (approach 1);
- for $W\gamma + W$ jets sample (approach 2);
- for $W\gamma$ sample only, using a data-driven estimation of W jets events (approach 3).
 - \rightarrow Fake factors computed as described in the last meeting (link^1) were used!

¹ https://indico.cern.ch/event/1420907/contributions/5975099/attachments/2864837/5013945/JetsFakingPhotons.pdf 🔿 <

K-factors are calculated in bins of transverse mass m_T , a good candidate to be a discriminating variable.

- bin 1: $[m_T]_{no\mu} \in [0, 80]$ GeV \rightarrow cut on m_T defining the CR;
- bin 2: $[m_T]_{no\mu} \in [80, 110]$ GeV;
- bin 3: $[m_T]_{no\mu} \in [110, 140]$ GeV \rightarrow centred on m_H , expected for signal;
- bin 4: $[m_T]_{no\mu} \in [140, 200]$ GeV;
- bin 5: $[m_T]_{no\mu} > 200 \text{ GeV}.$

ъ

$$K(m_T) = \frac{N_{data}^{1\mu CR}(m_T)}{N_{MC}^{1\mu CR}(m_T)}$$

$$K(m_T) = \frac{N_{data}^{1\mu CR}(m_T)}{N_{MC}^{1\mu CR}(m_T)}$$

m_T (GeV)	K	$\sigma_{\rm K}^{\rm stat}$
0-80	1.240	0.244
80-110	1.259	0.100
110-140	1.361	0.097
140-200	1.459	0.096
>200	1.465	0.156

ъ

Approach 2: K-factors for $W\gamma + W$ jets

$$\mathcal{K}(m_{T}) = \frac{[N_{data}^{1\mu CR} - N_{Zjets}^{1\mu CR} - N_{Z\gamma}^{1\mu CR} - N_{\gamma jets}^{1\mu CR} - N_{multijets}^{1\mu CR}](m_{T})}{[N_{W\gamma}^{1\mu CR} + N_{Wjets}^{1\mu CR}](m_{T})}$$

Approach 2: K-factors for $W\gamma + W$ jets

$$K(m_{T}) = \frac{[N_{data}^{1\mu CR} - N_{Zjets}^{1\mu CR} - N_{Z\gamma}^{1\mu CR} - N_{\gamma jets}^{1\mu CR} - N_{multijets}^{1\mu CR}](m_{T})}{[N_{W\gamma}^{1\mu CR} + N_{Wjets}^{1\mu CR}](m_{T})}$$

m_T (GeV)	K	σ_{K}^{stat}
0-80	1.279	0.287
80-110	1.282	0.109
110-140	1.376	0.101
140-200	1.473	0.099
>200	1.476	0.160

Jets faking photons in the 1 μ Control Region

Jets faking photons in the 1 μ Control Region

$$N_{dd}^{1\mu CR} = 276 \pm 84$$

1 =

Applying K-factors to MC in Signal Region

cut	$N^{SR}_{W\gamma}(K)$	$N_{W\gamma}^{SR}(K+\sigma_{K})$	$N_{W\gamma}^{SR}(K-\sigma_K)$
all	28543	22835	34250
$n_e = 0$	28543	22835	34250
$n_{\mu}=0$	28543	22835	34250
$n_{ au}=0$	23343	18681	28003
$p_T^{miss} > 100{ m GeV}$	10143	8062.1	12223
n_{γ}^{isol}	7408.6	5882.7	8934.3
$p_T^{\dot\gamma} > 50{ m Gev}$	7387.8	5866.1	8909.5
n _{jet}	6332.2	5029.4	7635.1
$m_T > 80 { m GeV}$	6254.6	4972.9	7536.4
$\Delta \Phi(ec{ ho}_T^{miss}, [ec{ ho}_T^{miss}]_\gamma) \geq 1.25$	822.81	655.64	989.99
$S_{ ho_T^{miss}} > 6$	711.51	566.92	856.09
$\Delta p_T^{miss} > -10 { m GeV}$	650.97	518.67	783.28
$ \eta_{\gamma} < \leq 1.75$	490.74	391.01	590.47
$\Delta \Phi(ec{ ho}_T^{miss}), [ec{ ho}_T^{miss}]_j) \leq 0.75$	425.12	338.69	511.55
$\Delta \Phi(ec{p}_T^{j1},ec{p}_T^{j2}) \leq 2.5$	369.38	294.26	444.5

三日 のへの