A Drift Chamber Tracker for SAND

Alessandro Ruggeri, Michele Pozzato and others DUNE-Italia Collaboration Meeting, Ferrara 29/10/2024

Motivations

- A potential backup design to the STT for the tracking system in SAND.
- The aim is to reduce complexity:
 - in the mechanical design and setup: by having wider connected drift volumes kept at atmospheric pressure.
 - in the number of channels: with a smaller number of sense wires with a wider spacing.
- Physics performance must be proven to be comparable to that of STTs.

Module layout

- In each module/station:
 - Target layer (CH₂ or C)
 - 3 multiwire planes at stereo angles: -5°, 0°, +5° with respect to the B-axis
 - Ar/CO₂ (85/15%) mix. at ~1 atm
- Current unit cell:
 - 1.4 x 1.2 cm²
 - Grounded sense wires
 - Mylar plane electrodes
- Garfield++ simulation of the cell

Potential detector layout

- 8 "super-modules" in the inner volume:
 6 symmetrical+ 2 downstream
- Removed the TRD compared to the base design
- 9 C₃H₆-modules and a C-module in each super-module
- ~240 planes
- 1.4x1.2 cm² cells: ~5x10⁴ channels
- 2x1 cm² cells: ~3.6x10⁴ channels

Small-scale prototype design

- Chamber designed and operated at INFN-Bologna:
 - ~30x30 cm² area
 - 3 staggered wire planes (-5°,0°,+5°)
 - 2x1 cm² cells
 - $\Delta V_{\rm field/sense} \simeq 3.2 \, \rm kV$, grounded planes
 - repurposed hardware from KLOE
- Running with cosmics
- Scintillator-based tracking system (~2 mm resolution)
- Readout by CAEN digitizers: 12 instrumented channels

Tracker

planes

Channel alignment

- Wire positions and orientations reconstructed from tracker data
- Fits are consistent with the nominal chamber geometry

Channel Efficiency

- Studied the cell response for several voltage configurations
- Noisy setup: implemented coherent-noise subtraction and peak finding algorithms
- Non-uniform efficiency across the cell:
 - $\epsilon > 90\%$ close to the wires
 - drop in the outer region likely due to the 200 ns integration window

Distance-time relation

- Studied the distance-time relation of the cells to estimate the drift velocity
- Modelled the signal time distribution to determine potential time offsets.
- Low tracker resolution is a limiting factor
- Preliminary estimation of the drift speed from the median t_{drift} values: ~ 20 μ m/ns

→ Consistent with MC simulations

BOLOGNA Istituto Nazionale di Fisica Nucleare Sezione di Bologna

Ranged integral (200 ns from thr.), d_w<1.12 cm

Fast response simulation

- Garfield++ to model drift and signal response
- Full particle simulation in Garfield++ is too slow → response by combining discrete electron signals.
- Customized G++ code to avoid overflows/slowdowns
- Toy MC simulation to validate prototype results

8

)

Medium-scale prototype

- Final single module analogue, 3 wire planes:
 - 120x80 cm² area
 - 1.4x1.2 cm² cells, grounded sense wires
 - ~180 channels
 - Read-out based on the TIGER ASIC
- Ongoing mylar foil creep tests
- Construction set to start in the near future
- Testbeam planned for early 2025

Conclusions and prospects

- Small-scale prototype:
 - Tested with cosmics at several field configurations
 - Good detector alignment, non-uniform efficiency across the cell
- Drift-chamber option included in sandreco simulation and tracking algorithm
- Ongoing detector performance studies.
- Medium-scale prototype:
 - Ongoing procurement
 - Garfield++ response simulation
 - TIGER demo board is under test in Bologna

Back-up

Small-scale prototype setup

From Top to Bottom:

- Plastic Scintillator:
 - size: 15x15 cm2;
 - Thickness 1 cm;
 - readout 1 PMT:
 - Hamamatsu R9880
 - Direct coupling
- Plastic Scintillator:
 - size: ~ 30 x30 cm²;
 - Thickness ~2 cm;
 - readout 2 PMTs
 - Fiber Coupling
- Drift Chambers (3 Layers):
 - Readout 12 channels (4 per layer)
 - KLOE pre-amplifiers: ~1.5 mV / fC
- Tracking system: position resolution ~2mm

Readout – TIGER ASIC

- UMC 110nm technology
- 64 channels per ASIC (2 ASIC per FEB)
- Time and charge measurement
- One demo board is now in Bologna

Mean ranged integral over the cell (MC)

- 1D profile over x0 of the rangedintegrals (vertical tracks production)
- Drop in the centre and at the edges
- Consistent with the drop in efficiency at the edges

• Drop at the centre likely due to starting point selection

Mean tot-integral over the cell

- Repeating the profile with the total integral
- The distribution is uniform over the range in x0
- Uniform response consistent with single e⁻ waveforms

Peak time dispersion

- Std. of the peak times within the waveform
- Dispersion increases with the distance

• Potential explanation of the smaller ranged-integral at higher distances

Combined range integrals

