

Readout ASIC for SiPM Arrays in the GRAIN Liquid Argon Detector

Activity Report

DUNE Collaboration Meeting, Ferrara 29/10/2024

<u>Stefano Durando</u>

Sofia Blua, Valerio Pagliarino, Angelo Rivetti

29/10/2024

ASIC Requirements: Signal Waveforms

SiPM signals to be readout have a complex structure:

• Single photon and large number of piled-up photons.

The ASIC must:

- **Detect single photons** (threshold = 0.5 p.e.)
- Timestamp the Maximum Number of Events
- **Count the photons** while minimizing the unintegrated and undigitized charge

Simulation for a matrix of 2 x 2 mm² SiPM with the optical lenses approach

0.25 SiPM 517 photons Entries 339369 16.15 Mean Full images Std Dev 39.2 0.20 10 0.15 10 V (mV) 10 0.10 0.05 300 400 500 0.00 # of photons for each pixel 2000 4000 10000 12000 6000 8000 time (ns)

Plots from "ASIC requirements for GRAIN optical detector readout" – A. Caminata et al

Features

ASIC for GRAIN

Channel Modularity	1024
SiPM Size	2 x 2 mm² / 100s pF
Measurements	ToA, ToT, Charge Integral
Single Photon Time of Arrival Resolut	ion 100 ps
Time over Threshold Resolution	1 ns
Charge Integration Response	Bilinear
Charge Integral Resolution	9 bit: 10 codes/phe; 3 codes/phe
Charge Dynamic Range	[1 - 25 phe]; [25 - 150 phe]
AVG Power Density	10 mW/ channel
Silicon Die Size	20 x 20 mm² (Reticle Size)
Operating Temperature	77 K – 300 K
Number of LVDS tranceivers	32 = 1 x Column
LVDS Transceiver Speed	320 Mbps SDR
Clock Frequency	310 – 325 MHz
Power Gating Feature	DUNE-compatible

INFN

INFN Background in 1024 Channels ASICs

• **Parent ASIC:** R&D with an external company

- UMC 110 nm
- 1024 Channels, reading out silicon pixels
- The ASIC is bump-bonded to the pixels
- Key IP blocks like the TAC based TDC (30 ps)
- Basis for the following prototypes

ALCOR v1

A Low power Chip for Optical sensors Readout

ALCOR's Parent: 1024 pixel channels were bumpbonded to the silicon pixels. The ASIC was wirebonded on the board

2 ALCOR chips wire bonded on the dedicated board Courtesy of Fabio Cossio (INFN)

SiPM Readout ASICs at INFN

 ALCOR v1: Mixed-signal ASIC for SiPM readout, Darkside framework (2019)
(A Low power Chip for Optical sensors Readout)
(PhD Thesis, W. Cheng, Polito: https://iris.polito.it/handle/11583/2842529)

- UMC 110 nm
- 32 channels, 4.95 x 3.78 mm²
- 440 x 440 µm² pixel channel
- Single-photon time tagging and ToT , compatible with both signal polarities
- LVDS digital output, 320 MHz DDR Tx links
- ≈12 mW/channel
- Tested at room temperature and in liquid Nitrogen

ALCOR v2.0/.1 and v3 ASICs for the dRICH EIC Detector at BNL (NY, USA)

(XII Front-End Workshop, Torino, link : https://agenda.infn.it/event/37033/contributions/228026/)

- Scaled to 64 channels
- V2.0: 2023 MPW and engineering run, debugged and optimized for the EIC detector
- V2.1: 2024 (Jan) Engineerig run, currently under test
- V3 : Final version, Silicon available in 2025

ALCOR v1 Top Cell Layout (Courtesty of F.Cossio)

Features	ASIC for GRAIN	ALCOR v3				
Channel Modularity	1024	64				
Measurements	ToA, ToT, Charge Integral	ТоА,ТоТ				
Single Photon Time of Arrival Resolution	100 ps	150 ps				
Time over Threshold Resolution	1 ns	1 ns				
Charge Integration Response	Bilinear	N.A.				
Charge Integral Resolution	9 bit: 10 codes/phe; 3 codes/phe	N.A.				
Charge Dynamic Range	[1 - 25 phe]; [25 - 150 phe]	N.A.				
AVG Power Density	10 mW/ channel	10 mW/ channel				
Silicon Die Size	20 x 20 mm ² (Reticle Size)	4.95 x 3.78 mm ²				
Operating Temperature	77 K – 300 K	300 K				
Number of LVDS tranceivers	32 = 1 x Column	8 = 1 x Column				
LVDS Transceiver Speed	320 Mbps SDR	320 Mbps SDR; 640 Mbps DDR				
Clock Frequency	310 – 325 MHz	310-325 MHz				
Power Gating Feature	DUNE-compatible	No				

INF

Features

ASIC for GRAIN ALCOR v3

Channel Modularity	1024	64
Measurements	ToA, ToT, Charge Integral	ТоА,ТоТ
Single Photon Time of Arrival Resolution	100 ps	150 ps
Time over Threshold Resolution	1 ns	1 ns
Charge Integration Response	Bilinear	N.A.
Charge Integral Resolution	9 bit: 10 codes/phe; 3 codes/phe	N.A.
Charge Dynamic Range	[1 - 25 phe]; [25 - 150 phe]	N.A.
AVG Power Density	10 mW/ channel	10 mW/ channel
Silicon Die Size	20 x 20 mm² (Reticle Size)	4.95 x 3.78 mm²
Operating Temperature	77 K – 300 K	300 K
Number of LVDS tranceivers	32 = 1 x Column	8 = 1 x Column
LVDS Transceiver Speed	320 Mbps SDR	320 Mbps SDR; 640 Mbps DDR
Clock Frequency	310 – 325 MHz	310-325 MHz
Power Gating Feature	DUNE-compatible	No

Upgrading the ALCOR Pixel

A Reticle Size ASIC

A Reticle Size ASIC

End-of-column LVDS with highimpedance mode, allowing multiple columns to share the same LVDS trace via Time-Division Multiplexing (TDM).

An access token passed among the columns authorizes transmission.

Various link aggregation configurations are supported, from 32 separate pairs to a single LVDS pair.

On-pixel M8 SiPM inputs bump PADs

500 µm

2 TACs 2 Integrators + 4

Timeline

	20	24		2025					
Jan-Feb-Mar	Apr-May-June	Jul-Aug-Sept	-Sept Oct-Nov-Dec Jan-Feb-Mar Apr-May-June J				Jul-Aug-Sept Oct-Nov-Dec		
Specs/Para	am Definition								
				De	sign				
			Schematic L	evel to Layout.		Final Veri	fications		
		Channel Readout and			Layout				

	202	26		2027					
Jan-Feb-Mar	Apr-May-June	Jul-Aug-Sept	Oct-Nov-Dec	Jan-Feb-Mar	Apr-May-June	Jul-Aug-Sept	Oct-Nov-Dec		

- Validation of the architecture by the collaboration for GRAIN detector's physics with:
 - Coded aperture masks
 - Lenses
- **Python software** designed in Torino by Sofia Blua and Valerio Pagliarino
 - Inputs: time domain reconstruction of a single spill -SiPM event
 - Behavioural model: Ideal description of the pixel electronics' response
 - Output: numpy array (ASIClike output)

Courtesy of Sofia Blua and Valerio Pagliarino

- Validation of the architecture by the collaboration for GRAIN detector's physics with:
 - Coded aperture masks
 - Lenses
- **Python software** designed in Torino by <u>Sofia Blua</u> and <u>Valerio Pagliarino</u>
 - Inputs: time domain reconstruction of a single spill SiPM event
 - Behavioural model: Ideal description of the pixel electronics' response
 - Output: numpy array (ASIClike output)

Courtesy of Sofia Blua and Valerio Pagliarino

Architecture Validation

Validation conducted by Bologna and Genova INFN

team:

 Simulation of realistic, physics-driven events and attempts at reconstruction with the lenses and the coded mask approaches

Critical variables:

- ADC's conversion speed (4 x ALCOR Version)
- Hold-on (time extension of the integration window after the trailing edge of the discriminator)
- Integrator gains (2 gains at least are needed)

Results suggest that the proposed architecture meets reconstruction requirements with minimal event information loss.

Calibration of the charge integrator

Dead time and fraction of lost charge

+ Cryogenic and room temperature ALCOR tests

... Then, a 2 x 2 matrix version by April/May (no submission), the 32 x 32 pixels version will follow

S. Durando

Flip-Chip BGA Package

Example:

Grid of 40 x 40 PADs with 500 μ m pitch

- 1024 input PADs to the SiPM
- 576 PADs for 6 supply domains, output drivers, trigger, SPI, Reset, En, Low power

Test Structures (Critical IP Blocks) ٠ • .184 cm (m) PCB

The ASIC is bump-bonded to an interposer connected to the board with package balls

- On-pixel PAD for SiPM
- Inter-column supply and ground PADs for reduced IR drops

Similar approach is followed for ALCOR v3 implementation for EIC

Ongoing investigation of possible companies

Flip-chip BGA working principle

Hsu, Hsin-Wu & Chen, Meng-Ling & Chen, Hung-Ming & Li, Hung-Chun & Chen, Shi-Hao. (2012). On effective flip-chip routing via pseudo single redistribution layer. 1597-1602.

10.1109/DATE.2012.6176727.

Timeline

2024			2025			2026				2027					
Jan-Feb-Mar	Apr-May-June	Jul-Aug-Sept	Oct-Nov-Dec	Jan-Feb-Mar	Apr-May-June	Jul-Aug-Sept	Oct-Nov-Dec	Jan-Feb-Mar	Apr-May-June	Jul-Aug-Sept	Oct-Nov-Dec	Jan-Feb-Mar	Apr-May-June	Jul-Aug-Sept	Oct-Nov-Dec
Specs/Para	m Definition														
		Design													
		Schematic Level to Layout			Final Verifications		Production								
		Channel Readout and Integration		Layout			Chip Prod	Packaging	Packaging Tests and Valid		tion				
											Final Design	า			
We are here													Produ	iction	
													Chip Prod	Packaging	

• The new ASIC for GRAIN:

- Leveraging expertise from previous and ongoing developments
- Implementation of silicon-prooved IP blocks shorten the development time

• 2 Engineering runs:

- A 1024 demonstrator tape-out scheduled for the end of December 2025
- Last submission with bug fixes in summer 2027
- Ongoing and future activities:
 - Pixel design targeting analog integration on top by the end of January
 - Test board and packaging are under study; production will commence once the PADframe is finalized (Dec 2025).

RD53 ASIC Scheme, a 10 years collaboration... Source: L. Pacher, (2023) "RD53 Pixel Readout Chips in 65 nm CMOS for ATLAS and CMS Phase2 upgrades", XII Front-End Workshop, Torino. RD53: http://rd53.web.cern.ch/

Thanks

BACK UP Slides

SiPM Signal Waveform

Figure 11: A typical SiPM waveform over the duration of the spill. All photons originate from one interaction.

Ongoing Activities: Pixel Design

Integrator Design:

- Transistor level design in Virtuoso
 - Current mirror based
 - DC current compensation
 - Two gains
- Schematic level simulations

2024

Current-steering ADC Design :

- ALCOR's ADC with improved conversion speed
- Backward compatibile
- New SAR-based conversion algorithm
 - Faster conversion
 - Control logic and current injection improvements
- Block ready for integration expected by

December

VFE Optimization :

- ALCOR Cryogenic tests and simulations showed:
 - Vth and R variations impact mostly the TIA and the DACs
- Optimization
 - TIA and DACs design optimization
 - Introcuction of configurable correction blocks
 - Noise optimization

Pixel Design

