Analytical 3D Reconstruction from Simulations with Lenses

Giovanni De Matteis

DIPARTIMENTO DI MATEMATICA E FISICA "ENNIO DE GIORGI" Università del Salento and I.N.F.N - Sezione di Lecce Italia Joint work with P. Bernardini, L. Di Noto, L. Martina and A. Surdo GENERAL PLAN

MULTIPLE VIEW PROJECTIVE GEOMETRY applied to

Previously

LIGHT POINTS RECONSTRUCTION ALGORITHM

Now

SINGLE and DOUBLE TRACK RECONSTRUCTION ALGORITHM

Then

MULTIPLE TRACK EVENTS RECONSTRUCTION ALGORITHM

GRAIN as a multiple lens system

Light Point Space Resolutions

Case Study: 1k light source points (randomly/uniformly)

(meant to be candidates for interaction vertices)

energy release: 100 MeV per point

GRAIN volume $1000 \times 1456 \times 475$

Point volume $800 \times 1200 \times 460$ units: mm

A small sample of Events

Track 0: muon	Track 1	l : proton					
Track 0 (degrees)	θ_X	$ heta_Y$	θ_Z	Track 1 (degrees)	$ heta_X$	$ heta_Y$	θ_Z
True	81.64	102.73	15.31	True	108.10	27.43	70.11

Event 1

Vertex (mm)	V_X	V_Y	V_Z					
True	0	0	-200					
Track 0 (degre	ees)	θ_X	θ_Y	θ_Z	Track 1 (degrees)	θ_X	$ heta_Y$	θ_Z
True		81.64	102.73	15.31	True	108.10	27.43	70.11

Images on Fired Cameras

2D Image Fitting

Out[•]=

Track Matching and 2D Recognition

FROM POINTS TO TRACKS

Track reconstruction: theoretical preliminaries

Back-projection of lines and points

x image point, X 3D light source point, π vector of plane parameters in 3D space, P camera matrix, l vector of line parameters on the sensor, L infinite line in 3D space to be reconstructed

Line Reconstruction

$$\mathbf{L} = \left(egin{array}{c} \mathbf{l}^T \mathbf{P} \ \mathbf{l}'^T \mathbf{P'} \end{array}
ight)$$

 $\mathbf{l}^T \mathbf{P}$ vector of plane π parameters in 3D space, $\mathbf{l}'^T \mathbf{P}'$ vector of plane π' parameters in 3D space, \mathbf{P}, \mathbf{P}' camera matrices, \mathbf{l}, \mathbf{l}' vectors of lines l, l' parameters on the sensor, \mathbf{L} infinite line in 3D space (to be reconstructed)

Reconstruction Formula

$$\mathbf{LX} = \mathbf{0} \tag{1}$$

 \mathbf{X} : generic point on the 3D line

 $L: 2 \times 4$ matrix of plane parameters

From Lenses to P-matrices

A P-matrix is associated to each of the 38 camera-lenses of GRAIN

$$\mathsf{GRAIN} \Longleftrightarrow \{\mathbf{P}_j\}_{j=1,\dots,38} \tag{2}$$

$$\mathbf{P}_{j} = \mathbf{K} [\mathbf{R}| - \mathbf{R}C_{j}], \quad j = 1, ..., 38$$
 (3)

$$\mathbf{K} = \begin{pmatrix} -f_x & s & x_0 \\ 0 & -f_y & y_0 \\ 0 & 0 & 1 \end{pmatrix}$$
(4)

 C_j coordinates of lens centers in GRAIN, **R** a rotation matrix (placement in GRAIN)

3D reconstruction of Points and Tracks

$$i, j = 1, \dots 38$$

 $\pi_i = \mathbf{P}_i^T \mathbf{l}_i$

 π_i vector of plane parameters in 3D space, \mathbf{P}_i camera matrix i, \mathbf{l}_i vector of line parameters on the sensor i,

$$\mathbf{L}_{ij} = \left(egin{array}{c} \mathbf{l}_i^T \mathbf{P}_i \ \mathbf{l}_j^T \mathbf{P}_j \end{array}
ight)$$

 \mathbf{L}_{ij} infinite line in 3D space to be reconstructed $\mathbf{l}_i^T \mathbf{P}$ vector of plane π_i parameters in 3D space, $\mathbf{P}_i, \mathbf{P}_j$ camera matrices, $\mathbf{l}_i, \mathbf{l}_j$ vectors of plane π_j parameters in 3D space, $\mathbf{P}_i, \mathbf{P}_j$ camera matrices, $\mathbf{l}_i, \mathbf{l}_j$ vectors of lines l_i, l_j parameters on the sensor, \mathbf{L}_{ij} infinite line in 3D space (to be reconstructed)

$$\mathbf{L}_{ij}\mathbf{X} = \mathbf{0} \tag{5}$$

X: generic point on the 3D line $\mathbf{L}_{ij}: 2 \times 4$ matrix of plane parameters

Points: reconstruction formula

$$\mathbf{0} = \mathbf{x}_i \times \mathbf{x}_i = \mathbf{x}_i \times \mathbf{P}_i \mathbf{X}_{ij} \tag{6}$$

$$\mathbf{0} = \mathbf{x}_j \times \mathbf{x}_j = \mathbf{x}_j \times \mathbf{P}_j \mathbf{X}_{ij}$$
(7)

$$\mathbf{X}_{ij} = \mathbf{P_i}^+ \mathbf{x}_i + \left[\frac{(\mathbf{P_j} \mathbf{P_i}^+ \mathbf{x}_i \times \mathbf{x}_j) \cdot (\mathbf{x}_j \times \mathbf{P_j} C_i)}{(\mathbf{x}_j \times \mathbf{P_j} C_i) \cdot (\mathbf{x}_j \times \mathbf{P_j} C_i)} \right] C_i$$
(8)

$$\mathbf{P}_{i}^{+} = \mathbf{P}_{i}^{T} \left(\mathbf{P}_{i} \mathbf{P}_{i}^{T} \right)^{-1}$$
(9)

 \mathbf{P}_i camera matrix i

 \mathbf{X}_{ij} reconstructed 3D point using cameras i and j, $i \neq j$.

 \mathbf{x}_i image point on camera *i*, C_i camera center *i*

Vertex Reconstruction (POINT ALGORITHM)

- Vertex in GRAIN
- Vertex is detected/seen by N cameras: as image vertex we take the intersection point on cameras with two track images
- There are $M = \frac{N!}{2!(N-2)!}$ possible double-view reconstructions for the vertex
- We perform M reconstructions
- $\bullet\,$ We take the mean value of the M possible reconstructions for each coordinate

$$V_X = \frac{\sum_{i < j}^N V_{X,ij}}{M} V_Y = \frac{\sum_{i < j}^N V_{Y,ij}}{M} V_Z = \frac{\sum_{i < j}^N V_{Z,ij}}{M}$$
(10)

i, j camera indices

Global Multiple View Reconstruction of a Track (TRACK ALGORITHM)

- $\bullet\,$ The track is detected/seen by N cameras
- There are $M = \frac{N!}{2!(N-2)!}$ possible double-view reconstructions for the track
- We perform M reconstructions: direction cosines, slopes and intercepts of the line orthogonal projections onto GRAIN coordinate planes XY, XZ, YZ
- We take the mean value of the M possible reconstructions for each line parameter (director cosines $(\cos \theta_X, \cos \theta_Y, \cos \theta_Z)$)

$$\cos \theta_X = \frac{\sum_{i < j}^N \cos \theta_{X,ij}}{M} \cos \theta_Y = \frac{\sum_{i < j}^N \cos \theta_{Y,ij}}{M} \cos \theta_Z = \frac{\sum_{i < j}^N \cos \theta_{Z,ij}}{M}$$
(11)

i, j camera indices

- Averaging of intercepts and slopes of lines orthogonally projected onto GRAIN coordinate planes XY, XZ, YZ of the M reconstructions
- Intersection of reconstructed lines in 3D: additional Vertex Determination

Event 1: Vertex and track distribution Black Spot \Rightarrow True Vertex

Event 1: Vertex and track distribution Black Spot \Rightarrow True Vertex

Event 1: "Best" Vertex and track distribution in 3D

Event 1: Mutually Double–Orthogonal Cameras Black Spot \Rightarrow True Vertex

Event 1: Mutually Double–Orthogonal Cameras Projection Black Spot \Rightarrow True Vertex

Event 1: Mutually Double–Orthogonal Cameras Reconstruction

Event 1: averaging

Numerics Event 1

Vertex (mm)	V_X	V_Y	V_Z
True	0	0	-200
Reco	-0.04	0.62	-204.34

Track 0 (degrees)	θ_X	$ heta_Y$	θ_Z	Track 1 (degrees)	θ_X	$ heta_Y$	$ heta_Z$
True	81.64	102.73	15.31	True	108.10	27.43	70.11
Reco	82.31	103.26	15.37	Reco	105.18	33.22	61.25

Track 0	$\cos \theta_X$	$\cos heta_Y$	$\cos \theta_Z$	Track 1	$\cos \theta_X$	$\cos \theta_Y$	$\cos \theta_Z$
True	0.145	-0.221	0.965	True	-0.311	0.888	0.340
Reco	0.134	-0.229	0.964	Reco	-0.262	0.837	0.481

A small sample of Events: vertex coordinates

A small sample of Events: $\theta_X, \theta_Y, \theta_Z$ residuals for track 0

A small sample of Events: $\theta_X, \theta_Y, \theta_Z$ residuals for track 1

Track Matching problem, 2D Recognition and the Trifocal Tensor

TRIFOCAL TENSOR CONDITION and TRANSFER

$$\mathcal{T}_{i}^{qr} = f_{i}^{qr}(\mathbf{P}, \mathbf{P}', \mathbf{P}'')$$
$$\mathcal{T}_{i}^{qr} = \frac{1}{2} \epsilon_{ilm} \det \begin{pmatrix} \mathbf{P}_{l1} & \mathbf{P}_{l2} & \mathbf{P}_{l3} & \mathbf{P}_{l4} \\ \mathbf{P}_{m1} & \mathbf{P}_{m2} & \mathbf{P}_{m3} & \mathbf{P}_{m4} \\ \mathbf{P}_{q1}' & \mathbf{P}_{q2}' & \mathbf{P}_{q3}' & \mathbf{P}_{q4}' \\ \mathbf{P}_{q1}'' & \mathbf{P}_{q2}'' & \mathbf{P}_{q3}'' & \mathbf{P}_{q4}'' \end{pmatrix}$$

Track Matching Condition

$$l_p l'_q l''_r \epsilon^{piw} \mathcal{T}_i^{qr} = 0^w$$

Current simulations: positive matching $\approx 10^{-2}$, no matching $\approx 10^3$

Image Transfer Equation

$$l_p = l'_q l''_r \mathcal{T}_p^{qr}$$

Conclusions

So far

- Reconstruction of Light Points in GRAIN via Multiple View Projective Geometry
- Reconstruction of Tracks in GRAIN via Multiple View Projective Geometry
- Method improved by points and directions correspondence and vertex finding
- Triple view geometry for Track Recognition and IMAGE TRANSFER: Trifocal Tensor

TO BE DONE

- Study of a sample of 1K events distributed over GRAIN volume: single track and double track with vertex
- Extension to events with multiple vertices and multiple tracks
- $\bullet \ P$ camera matrix calibration
- Software

and ...

THANK YOU

For Your Attention!

Back-up

Photon Distribution on Fired Cameras

Details on Simulations

- 1000 light point sources
- 4×10^6 photons per point
- $\bullet~{\rm light}{-}{\rm yield}~4\times10^4~{\rm photons/MeV}$
- $\bullet\,$ energy release: $100~{\rm MeV}\,{\rm per}\,{\rm point}$
- processes: scattering, absorption, refractive indices depending on the wavelength

From Lenses to P-matrices

A \mathbf{P} -matrix is associated to each of the 38 camera-lenses of GRAIN

$$\mathsf{GRAIN} \Longleftrightarrow \{\mathbf{P}_j\}_{j=1,\dots,38} \tag{12}$$

Cameras on the 4 sides

elliptic side 1, even numbers
$$\mathbf{P}_{2j}, j = 1, ..., 14$$
 (13)

elliptic side 2, odd numbers
$$P_{2j+1}, j = 0, ..., 13$$
 (14)

top side
$$\mathbf{P}_{2j}, \quad j = 15, ..., 19$$
 (15)

bottom side
$$\mathbf{P}_{2j+1}, \quad j = 14, ..., 18$$
 (16)

Elliptic side 1, even numbers

$$\mathbf{P}_{2j} = \mathbf{K} \left[\mathbf{R} | - \mathbf{R} C_{2j} \right], \quad j = 1, ..., 14$$
 (17)

$$\mathbf{K} = \begin{pmatrix} -f_x & s & x_0 \\ 0 & -f_y & y_0 \\ 0 & 0 & 1 \end{pmatrix} \qquad \mathbf{R} = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ -1 & 0 & 0 \end{pmatrix}$$
(18)

 $C_{2j}, \quad j = 1, \dots 14$ lens centers in GRAIN (19)

parameters: $c = 399, f_x = f_y = f = 100, p_z = 110, q_z = 105$,

$$r_z = 90, p_y = 145, q_y = 290, r_y = 475, s = x_0 = y_0 = 0$$

units: mm

Further parameterization of **P**-matrices for general Calibration

In fact, each of the 38 ${f P}$ matrices can be further parameterized by including **radial** distorsion

$$\mathbf{P}_{2j} = \mathbf{L}_{2j} \mathbf{K} \begin{bmatrix} \mathbf{R} | -\mathbf{R}C_{2j} \end{bmatrix}, \quad j = 1, ..., 14$$

$$\mathbf{L}_{2j} = \begin{pmatrix} L_{2j}(r) & 0 & x_c \\ 0 & L_{2j}(r) & y_c \\ 0 & 0 & 1 \end{pmatrix}$$
(20)
$$(21)$$

 $L_{2j}(r) = 1 + k_1^{2j}r + k_2^{2j}r^2 + k_3^{2j}r^3 + \dots, \qquad r = \sqrt{(x - x_c)^2 + (y - y_c)^2}$ (22)

(x,y) image coordinates on the sensor coordinate local frame, (x_c,y_c) distortion center on he sensor coordinate local frame

Elliptic side 2, even numbers

$$\mathbf{P}_{2j+1} = \mathbf{K} \begin{bmatrix} \mathbf{R}_1 | -\mathbf{R}_1 C_{2j+1} \end{bmatrix}, \quad j = 0, ..., 13$$
(23)
$$\mathbf{K} = \begin{pmatrix} -f_x & s & x_0 \\ 0 & -f_y & y_0 \\ 0 & 0 & 1 \end{pmatrix} \quad \mathbf{R}_1 = \begin{pmatrix} 0 & 0 & -1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}$$
(24)
$$C_{2j+1}, \quad j = 0, ...13 \quad \text{lens centers in GRAIN}$$
(25)
$$parameters: c = 399, f = 100, p_z = 110, q_z = 105,$$

$$r_z = 90, p_y = 145, q_y = 290, r_y = 475, s = x_0 = y_0 = 0$$

units: mm

 $r_z =$

Top side, even numbers

$$\mathbf{P}_{2j} = \mathbf{K} \left[\mathbf{R}_2 \right] - \mathbf{R}_2 C_{2j} , \quad j = 15, ..., 19$$
 (26)

$$\mathbf{K} = \begin{pmatrix} -f_x & s & x_0 \\ 0 & -f_y & y_0 \\ 0 & 0 & 1 \end{pmatrix} \qquad \mathbf{R}_2 = \begin{pmatrix} 0 & 0 & 1 \\ -1 & 0 & 0 \\ 0 & -1 & 0 \end{pmatrix}$$
(27)
$$C_{2j}, \quad j = 15, \dots 19 \qquad \text{lens centers in GRAIN}$$
(28)

parameters: $d = 609, f = 100, w_x = 145, v_x = 280, s = x_0 = y_0 = 0$

units: mm

Bottom side, odd numbers

$$\mathbf{P}_{2j+1} = \mathbf{K} \begin{bmatrix} \mathbf{R}_3 & -\mathbf{R}_3 & C_{2j+1} \end{bmatrix}, \quad j = 14, ..., 18$$

$$\mathbf{K} = \begin{pmatrix} -f_x & s & x_0 \\ 0 & -f_y & y_0 \\ 0 & 0 & 1 \end{pmatrix} \quad \mathbf{R}_3 = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$$

$$C_{2j+1}, \quad j = 14, ...18 \quad \text{lens centers in GRAIN}$$
(30)
(31)

parameters: $d = 609, f = 100, w_x = 145, v_x = 280, s = x_0 = y_0 = 0$

units: mm

Further parameterization of P-matrices for general Calibration

In fact, each of the 38 ${f P}$ matrices can be further parameterized by including **radial** distorsion

$$\mathbf{P}_{j} = \mathbf{L}_{j} \mathbf{K} \begin{bmatrix} \mathbf{R}_{j} | -\mathbf{R}_{j} C_{j} \end{bmatrix}, \quad j = 1, ..., 38$$
(32)
$$\mathbf{L}_{j} = \begin{pmatrix} L_{j}(r) & 0 & x_{c} \\ 0 & L_{j}(r) & y_{c} \\ 0 & 0 & 1 \end{pmatrix}$$
(33)

$$L_j(r) = 1 + k_1^j r + k_2^j r^2 + k_3^j r^3 + \dots, \qquad r = \sqrt{(x - x_c)^2 + (y - y_c)^2} \quad (34)$$

(x,y) image coordinates on the sensor local coordinate frame, (x_c,y_c) distortion center on the sensor local coordinate frame