Update on the design of the lens based optical detector for GRAIN

Silvia Repetto

University of Genova and INFN Genova

DUNE-Italia Collaboration Meeting October 29th, 2024

Lens-based configuration

• For the optical system for GRAIN, one of the two possible options is a lens-based optical detector

- 2 mm side SiPM 32x32 matrices
- A unique ASIC specifically designed for GRAIN

Simulation and tests

Tests

Goal: Test and calibrate the acquisition board using an artificial light source

Simulations

Goal: Validation of the proposed design for the ASIC. A dedicated analysis on Monte Carlo data has been performed

4 29-10-2024 S. Repetto | Update on the design of the lens based optical detector for GRAIN

First prototypes

- 2 types of **optical system**:
 - **Type A**: two plane-convex lenses \rightarrow gas between the two lenses
 - Type B: single bi-convex lens \rightarrow gas between the lens and the sensor

- 2 different **materials**:
 - SILO Corning[®] HPFS 8655 glass → needs Xenon doping
 - $MgF_2 \rightarrow does not need Xenon doping$

Both material samples successfully tested in LN_2

Pieces in the workshop

First prototypes Type A Material: Corning® HPFS 8655 glass Focal length: 89 mm

1. Smaller diameter: 50 mm
 Thickness: 12 mm

2. Bigger diameter: 60 mmThickness: 20 mm

sembled

construction

5

_

To be

Material: MgF₂ Diameter: 66 mm Radius of curvature: 60 mm

Type B

Material: Corning® HPFS 8655 glass

Focal length: 64 mm

Diameter: 50 mm

Thickness: 18 mm

Set up: the artificial light source

The source light system is made up of a Xe pulsed lamp at 5 W made by HAMAMATSU, to which is connected a monochromator that gives us the possibility to select a specific wavelength.

Set up and readout

• Sensors:

29-10-2024

Matrix with 16x16 SiPM:

- Different sizes: 1 mm or 3 mm (2 mm almost ready)
- With or without TPB deposition (wavelength shifter)

The SiPM matrix is acquired by 8 Alcor chips

For each channel, we can record:

- Time of the over-threshold (TDC time)
- TOT (Time Over Threshold)

We have to optimize threshold and gain for each channel

To interface the Alcor chips, an FPGA is used

Tests performed both at room temperature and in Liquid Nitrogen

The pulsed light signal on the whole matrix

Matrix: 3mm x 3 mm without TPB

Full spectrum – no specific wavelength selected

- 18 counts are expected for each channel
- Thresholds not completely optimized
- Some problematic channels
- CHIP U7 temporarily broken
- Light is detected on the whole matrix

Pulsed light signal on few channels

• By using a shield the light impinged only few channels

8 counts are expected for each channel

Less intense pulsed light

- 2 counts are expected for each channel
- The light signal is well detected only in the center
- A few channels are still problematic

A problem with the TPB deposition Pulsed light signal on the whole matrix: Matrix: 1 mm x 1 mm with TPB

• If we point the light on a single SiPM, the light is detected everywhere

- In October at LNGS N. Canci deposited TPB by using a grid
- We will test it soon!

This is due to the uniform layer of deposited TPB

Conclusions

 Having optimized threshold and gain for each channel, the signal is correctly acquired

• We have to perform other tests with SiPM of 3 mm side matrix with the new TPB deposition

 After final threshold optimization, we will proceed with tests of the lens prototypes

Validation of the proposed ASIC design

- Starting point: ALCOR (A Low-power Chip for Optical sensors Readout)
- Developed by INFN Section of Torino
- 32 channels
- Single-photon time tagging mode or time and charge measurement

Final configuration: GRAIN ASIC

- 1024 channels
- Integration window:
 - rising edge with a timing resolution of 100 ps
 - falling edge with a timing resolution of few ns
 - charge integrator
- Power consumption < 5 mW/ch

FINAL GRAIN ASIC Pixel Scheme

Uni**Ge**

Monte Carlo simulations

- Simulated data: neutrino interactions in SAND during a spill time
- **Geometry:** 53 cameras, 1024 channels (SiPMs 2x2 mm² each)
- Simulations consist of photon scintillation emission both in pure Liquid Argon and in Xenon-doped liquid Argon
- **Simulation output**: position and time of photons detected by each camera, quantum efficiency included
- ASIC simulation output: integrated charge (reconstructed photons), number of integration windows for each spill, opening and closing time of each integration window

By studying the ASIC simulation output we want to validate the ASIC design with respect to the physics requirements

UV Lenses

5 cm

Uni**Ge**

Physics goals & ASIC requirements

• Track reconstruction

Calorimetric reconstruction

Distinguish multiple events
 in the same spill

15

29-10-2024

Physics goals & ASIC requirements

• Track reconstruction

Calorimetric reconstruction

 Distinguish multiple events in the same spill

Capability to accurately detect few photons (0-10 photons) per channel

ASIC requirements **Physics goals** &

#detected/#detectable photons

0.6

200

400

Track reconstruction

Calorimetric reconstruction-

Distinguish multiple events in the same spill

Saturation over 100 photons for each integration window

600

800

1000

1200

1400

1600

Nmax 20

Nmax 80

Efficiency vs energy deposit for different saturation values

98899 344.8

350.4

Physics goals

&

Track reconstruction

Calorimetric reconstruction

ASIC requirements

Photon distribution in a spill time by integrating on all cameras

 Distinguish multiple events // in the same spill

29-10-2024

18

Good reconstruction of the time of the first photons of each interaction (100 ps for neutrino interaction)

Study for the time reconstruction of the first photon in each channel for each

Uni**Ge**

Studies with lens configuration

We have considered simulations in **Xenon-doped liquid Argon Simulated data**: 720 spills

We select three samples by considering:

- 1. Number of integration windows
- 2. Number of photons within an integration window
- 3. Number of photons arriving in 20 ns after the interaction time

Number of integration windows

Reconstructed photons vs MC-truth photons

21 29-10-2024 S. Repetto | Update on the design of the lens based optical detector for GRAIN

Number of photons within an integration window

Xenon-doped Ar 720 spills

2d histograms

Reconstructed photons vs MC-truth photons bhotons photons Reconstructed photon --- V = X V = XReconstructed 10¹ 40 100 20 60 80 100 120 20 MC²⁰⁰/truth photons Ó 100 400 500 MC-truth photons

2 < N° of photons within a single integration window < 100

N° of photons within a single integration window > 100

- 1. Green region: we require a very good reconstruction
- 2. Red region: only for check

The reconstruction is **good up to 500 photons**. From 500 photons there is saturation and the number of reconstructed photons is always 500

Number of photons arriving in 20 ns after the interaction time

Xenon-doped Ar 720 spills

- This is the distribution of the number of photons per channels within 20 ns from the true interaction time
- The true interaction time is given by true information from Monte Carlo, if a peak of at least 3 photons is detected in the channel
- For a big fraction of events we have ≈ 20-25 piled photons
- This will be taken into account for the Front End
 amplifier design

Conclusions

- The preliminary ASIC design satisfies the requirements
- We are able to properly reconstruct the interaction time
- We have defined the important parameter for the electronics design: clock period, ADC dynamic range and Front End saturation
- These studies are almost completed and the ASIC design has already started

THANK YOU FOR YOUR ATTENTION

25 29-10-2024 S. Repetto | Update on the design of the lens based optical detector for GRAIN

Charge calibration

 Since the architecture simulation gives us the integrated charge, it is necessary to do a charge calibration to understand what is the relationship between integrated charge and number of photons

Selected sample	Requirement	Loss of photons	Loss of photons (%)	Satisfied
# of integrators = 2 (GREEN REGION)	Very good reconstruction of the number of photons	topological sector of the sect	6) 20% of loss 10 ² 0 0 0 0 0 0 0 0 0 0 0 0 0	YES
3 < # of integrators < 7 (ORANGE REGION)	Good reconstruction of the number of photons	Support Suppor	(%) of loss 10 ¹ 10	YES
# of integrators > 7 (RED REGION)	Only for check	Support suppor	20% of loss 4×10 ⁹ 2×10 ⁹ 2×10 ⁹ MC-truth photons	YES

Selected sample	Requirement	Loss of photons	Loss of photons (%)	Satisfied
2 < Nph in a single integration window < 100 (GREEN REGION)	Very good reconstruction of the number of photons	Stopped to to to to to to to to to to to to to	(%) 20% of loss	YES
Nph in a single integration window > 100 (RED REGION)	Only for check	support to to to to to to to to to to to to to	(%) of loss, (%) o	YES

