

GRAIN calibration with muons

Antonio Surdo

INFN - Lecce Group

DUNE Italian General Meeting Ferrara, 28-30 October 2024

GRAIN Detector calibration

Generally for a ν detector

The detector signals have to be correlated to the properties of particles produced in the neutrino interaction: <u>momentum</u> and <u>energy</u>, <u>charge</u>, <u>ToF</u>, <u>particle ID</u>, ...

Objective: get full information on the **interacting neutrino** features:

- Energy, Flavor, Interaction type

The case of GRAIN

<u>Event features</u> to be reconstructed from detector signals: **interaction vertex**, **tracks**, **time**, **energy deposit** (transferred directly to the LAr and/or carried out by the outgoing tracks)

<u>Detector</u>: **SiPM matrices** collecting the scintillation light photons in the whole sensitive LAr volume through lenses and/or coded masks

GRAIN Detector readout

- 1024 SiPM matrix
- SiPM 3x3 mm² area
- mask same size and hole pitch of SiPM matrix
- 60 cameras inside GRAIN, total 62k channels

- 38 cameras, for maximum coverage:
 - 14 pairs on the sides (at optimal distance)
 - 5 pairs on top/bottom
- Assuming 32x32 matrix sensors, with 2 mm pixels and 20% QE.

Lenses

Energy deposit evaluation

- ✓ In principle, two possible approaches (probably complementary and interleaved):
- a) Calorimetric measurement of total released energy
 Extract the whole energy released in GRAIN from the total number of collected photons
 by all SiPM matrices
- **a)** Track-by-track energy loss evaluation
 For each reconstructed track, evaluate the associated amount of collected photons
- ✓ In both cases, several factors must be taken into accounts:
 - relation between energy deposit and scintillation light emission
 - positions of interaction vertex and track propagation through the volume (absorption of photons, geometrical acceptance, ..)
 - SiPM photon detection efficiency

Physics processes useful for calibration

 ✓ Calibration obtained from selected processes in GRAIN, using directly the experimentally collected events (in prototype or on the v beam)

Other "standard candle" processes:

- MIP

- muon decay electrons
- stopping muons
- π⁰
- ✓ Ad hoc calibration sources (?):
 - Radioactive source

Use of muons for calibration

- ✓ Most obvious process to be considered: MIPs crossing the LAr volume
 - muons from the beam interaction outside GRAIN
 - cosmic ray muons
- ✓ Specific energy loss for a generic material: <dE/dx> ~ 2 MeV/g⋅cm⁻²
 Can be estimated from MC simulation or measured from experimental data.
 For LAr:

 $\label{eq:def} dE/dL \sim 2.5 \mbox{ MeV/cm } \Rightarrow N_0 \sim 10^5 \mbox{ ph /cm } \mbox{ Photon emission per unitary pathlength} \\ \mbox{ (assuming } f \sim 4 \cdot 10^4 \mbox{ ph/MeV})$

The relation between muon Pathlength and Energy loss exploited to get knowledge of energy deposit in LAr, to be related to the amount of detected photons

Muons crossing GRAIN

A physics process like a MIP (muon) crossing LAr volume in GRAIN easily available both on the v beam and in GRAIN prototypes (ARTIC and LNL)

Muon from v interaction in the yoke and crossing GRAIN

GRAIN prototypes at LNL

A possible plan

Possible method to be implemented:

- Reconstruct the tracks in the event ("SandReco")
- Select the events with a clean muon track generated outside and crossing GRAIN
- Estimate the track **Pathlength (** Δ **L)** and the corresponding **Energy Loss (** Δ **E**_{loss}**)** in LAr
- Correlate the total **collected photons** to the **deposited energy** in Lar, in order to calibrate photo-sensor response

To test this procedure:

- MC samples of nu_mu CC interactions both in ECAL and magnet Yoke were generated
- The events with a muon crossing GRAIN are then selected, and ΔL and ΔE_{loss} are evaluated from *EdpSim* information related to the muon trajectory
- The subsample of events is considered in which the muon crosses GRAIN not accompanied by other particles
- By using the photo-sensor setup (including layout, efficiencies and electronics), the number of photons collected by all SiPM matrices is finally correlated to ΔE_{loss}

Monte Carlo simulation of v interactions

Three samples of nu_mu CC interactions in whole SAND, in the Magnet yoke and in ECAL were generated through GENIE

Distribution of interaction vertexes:

g

Events with the muon entering GRAIN

Vertex in the Magnet yoke

Total interaction events: 441,000 Muons entering GRAIN: ~ 13,000 (3%)

Clean muons: ~ 10,000 (2.3%)

Vertex in ECAL

Energy deposit evaluation

Selection of events with the muon entering the GRAIN volume:

Precise determination of <dE/dx> by the muons crossing GRAIN

 ΔE : energy loss by the muon in ΔL

Relation btw ΔL and ΔE

Calibration curve to extract muon energy from Track-length

Simulation of light collection and imaging setup

Scintillation light photons propagated in LAr and collected by the photo-sensor system through *OptMen* code

Simulation of the Lens-camera setup with proper SiPM-PDE and Electronics (also the Coded mask setup could be used)

Total # of 53 cameras in GRAIN

PDE ≈ 0.1 - 0.2

Muon Pathlength in GRAIN and Collected photons

Photons collected by the 53 cameras in GRAIN

- Average number of fired cameras ≈ 35
- Average number of photons ≈ 4200
- Significant fraction with low number of photons

DUNE Italian General Meeting - A. Surdo

Correlation btw detected photons and deposited energy

Apparently, different behaviours ?

vs geometrical acceptance

Calibration curve from muons

Correlation using the profile

Calibration curve from the fit

Expected muon flux from the beam and CRs

✓ Different contributions of the target masses in SAND for beam neutrinos

Table 1.29: Total number of $(\nu_{\mu} + \bar{\nu}_{\mu} + \nu_{e} + \bar{\nu}_{e})$ CC+NC events expected within a single beam spill (9.6 μ s, 7.5 × 10¹³ POT) in the various detector components for both the FHC and RHC beam modes.

Detector element	Mass	FHC	RHC
Magnet	511 t	68.9	36.6
ECAL	100 t	13.5	7.2
LAr+STT	8.2 t	1.1	0.59
STT fiducial volume	5.5 t	0.74	0.39
Total	619.2	83.5	44.39

• From the interaction rate /spill in Magnet yoke and ECAL, a quite low number of clean muons are expected to cross GRAIN per spill (\leq 1 / spill) Table 1.34: Number of events per spill (9.6 μs , 7.5 × 10¹³ POT) and selection efficiency for the signal from ν_{μ} CC in the front barrel ECAL and the backgrounds from rock muons and magnet events.

	ECAL		Rock muons		Magnet events	
Cut	Events	arepsilon (%)	Events	ε (%)	Events	ε (%)
No cut	2.23	100.0	1447.26	100.000	50.82	100.000
μ in ECAL FV	2.23	100.0	12.73	0.880	18.92	37.229
STT & ECAL hits	1.63	72.9	6.05	0.420	3.443	6.775
NN cut	1.56	95.5	0.10	0.007	0.07	0.136

• Further contribution from rock μ 's (~ 1.7/spill) ...

✓ Contribution from Cosmic Rays ...

CR Muon flux at surface ~ 0.01 $\mu/(s \text{ cm}^2)$ + underground reduction of ~ 100 Effective area of GRAIN for <60° CR muons: ~3×10⁴ cm² ⇒ ~ 3 μ/s are expected to cross GRAIN

Drawback: smaller acceptance by the tracker for a precise track reconstruction

• Main contribution only if inter-spill DAQ were ON

Conclusions

- ✓ Primary aim of GRAIN calibration: measure of deposited enery
- Available «standard candle» processes (selected directly in the collected data) useful for this purpose: MIP, stopping muons, muon decay e-, π⁰, ...
 Ad hoc sources: radioactive source, LED, .. ?
- ✓ Most obvious available process: muons crossing the LAr volume, from beam interactions outside GRAIN (other detector volumes, rock) and cosmic rays
- ✓ A possible procedure for energy calibration proposed and preliminarly tested, based on the Monte Carlo simulation of v_{μ} interactions in ECAL and Yoke, and the Lens-camera system response (including geometrical layout, PDE, electronics, ..)
- ✓ Results too preliminary to get conclusions on the method validity

BACKUP

Correlation btw photons and deposited energy

- Not a so narrow correlation
- Possible effects from track position vs geometrical acceptance

Energy deposit evaluation

For a given track (or interaction event) in GRAIN, the photon content in the i-th image (i.e. in the i-th SiPM matrix) can be written as:

$$N_{photons}^{i} = \alpha_{QE}^{i} \cdot \alpha_{GEOM}^{i} \cdot N_{0}, \qquad N_{0} = \mathbf{f} \cdot \Delta \mathbf{E}$$

 α^{i}_{OE} : SiPM Photon Detection Efficiency in i-th matrix (known)

 α^{i}_{GEOM} : geometric acceptance factor, depending on the distance and position of the pixels in i-th matrix, and (for coded masks) on the mask layout

(from MC simulations and comparison of different matrices)

 ${\bf f}:$ factor relating deposited energy and scintillation light emission $% {\bf f}$ in LAr

(\approx known or estimated from experimental data ... ARTIC?)

Typical value for (UV) light emission: $f \sim 4 \cdot 10^4 \ ph/MeV$

Muons crossing LAr volume

> Precise determination of <dE/dx>

From MC simulation (FLUKA) of SAND, for a μ crossing GRAIN (cryostat walls included):

Full 3D reconstruction on selected muon tracks crossing LAr volume

