Updates to the ECAL endcaps geometry

Alessandro Ruggeri DUNE-Italia Collaboration Meeting, Ferrara 29/10/2024

Updated endcap geometry

- Realistic geometry implemented by Paolo Gauzzi in dunendggd branch-18.
- Old geometry: disk-shaped endcaps with "virtual" modules
- New geometry: fully modelled endcap models and AI back-plates

Updates to digitization

- New endcap modules:
 - composed of multiple sections
 - varying length and shape
 - Aluminium back-plate
- Cell finding and indexing in SANDGeoManager
- Path length to PMT (d1, d2) computation depends on the module geometry
- Hit reconstruction from TDCs in the new geometry

SANDGeoManager

- Management of the SAND ECAL and tracker geometries
- Extracts relevant quantities of cells and tubes from the TGeoManager object:
 - encoding and decoding of IDs
 - positions, dimensions, etc...
- Accepts drift-chamber geometries thanks to V. Pia and G. Ingratta
- Modified ECAL manager and added new class to manage endcap cells
- ECAL cells path length computation and hit reconstruction
- Currently working on sandreco <u>branch-20</u>

20-update-sandgeomanager-for-the-ecal-endcap-modules

Digitization checks

- sandreco digitization runs again from beginning to end
- Checked the new indexing and extraction of cell info
- Next step: hit position reconstruction from photo-signals

DEEP UNDERGROUND NEUTRINO EXPERIMENT

Hit position reconstruction

• Path length to a PMT given signal TDCs at both ends:

$$d_1 \simeq \frac{1}{2} (l_{cell} + v_{prop} \cdot \Delta_{TDC})$$

- Physical constraints: $0 < d1 < l_{cell}$
- Transversal coordinates are set as the cell centre
- Reconstructed hit position from d₁ given the cell geometry:
 - 1. Local coordinates corresponding to d_1
 - 2. Conversion to global coordinates

edepsim hit distribution

• Hits corresponding to the first available photo-electron in a pair of photo-signals.

Digitized hit pe ZY view

-2414

Hit reconstruction

• Considering all photo-signal pairs in a cell \rightarrow potential spurious matches

Sezione di Bologna

Spatial distribution of the residues

- Average residue for each bin in edepsim-hit coordinates
- Reconstructed positions are consistent with edepsim once d_1 is constrained.

Residue distribution (XY view)

Residue distribution (ZY view)

Direction-wise residues

• Direction-wise residues are consistent with the cell directions in barrel and endcaps

Istituto Nazionale di Fisica

Sezione di Bologna

Conclusions and prospects

- In dunendggd: increased the size of the magnetized volume for ROOT node finding algorithm to work with the new endcap modules
 - resulting overlaps must be solved before merging branch-18
 - update strategy is to be decided
- In sandreco: merge with develop branch in the near future:
 - updated scintillation decay time
 - SANDGeoManager for drift-chamber geometries
- Waiting for a defined merge strategy for ECAL digitization

